1
|
Khotmungkhun K, Prathumwan R, Chotiyasilp A, Watcharasresomroeng B, Subannajui K. Mechanical property of pixel extrusion and pin forming for polymer, ceramic, and metal formation. Heliyon 2023; 9:e12871. [PMID: 36711282 PMCID: PMC9879782 DOI: 10.1016/j.heliyon.2023.e12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The rapid material fabrications in pixel shape were mechanically studied in comparison with FDM and STL 3D printing technique. The pixel extrusion technique was the extrusion with a set of holes in the die. By controlling the flow of each hole in the die, the shape could be adjustable. The pixel molding technique composed of a set of pins. By adjusting the length of pin inside the mold, the shape of cavity could be designed. Compared to 3D printing which requires the material deposition with 2D scanning for several layers, 3D material fabrication by pixel extrusion and pixel molding were much faster; however, their resolutions were still much worse compared to 3D printing at the moment. SEM, Tensile test, flexural test, including hardness were used to observe the properties of pixel extrusion and pixel molding. The pixel molding technique was also used to fabricate many materials to compare the properties such as cement, iron, and silica. Apparently, materials could be formed and mechanical properties were investigated.
Collapse
Affiliation(s)
- Kittikhun Khotmungkhun
- Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Nonthaburi, 11000, Thailand
- School of Materials Science and Innovation, Material Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Rat Prathumwan
- School of Materials Science and Innovation, Material Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Arkorn Chotiyasilp
- School of Materials Science and Innovation, Material Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Kittitat Subannajui
- School of Materials Science and Innovation, Material Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Corresponding author.
| |
Collapse
|
2
|
Whulanza Y, Azadi A, Supriadi S, Rahman S, Chalid M, Irsyad M, Nadhif M, Kreshanti P. Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend. Heliyon 2022; 8:e08600. [PMID: 35028440 PMCID: PMC8741438 DOI: 10.1016/j.heliyon.2021.e08600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/21/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
A polymeric bone implants have a distinctive advantage compared to metal implants due to their degradability in the local bone host. The usage of degradable implant prevents the need for an implant removal surgery especially if they fixated in challenging position such as maxillofacial area. Additionally, this fixation system has been widely applied in fixing maxillofacial fracture in child patients. An ideal degradable implant has a considerable mass degradation rate that proved structural integrity to the healing bone. At this moment, poly(lactic acid) (PLA) or poly(lactic-co-glycolic acid) (PLGA) are the most common materials used as degradable implant. This composition of materials has a degradation rate of more than a year. A long degradation rate increases the long-term biohazard risk for the bone host. Therefore, a faster degradation rate with adequate strength of implant is the focal point of this research. This study tailored the tunable degradability of starch with strength properties of PLA. Blending system of starch and PLA has been reported widely, but none of them were aimed to be utilized as medical implant. Here, various concentrations of sago starch/PLA and Polyethylene glycol (PEG) were composed to meet the requirement of maxillofacial miniplate implant. The implant was realized using an injection molding process to have a six-hole-miniplate with 1.2 mm thick and 34 mm length. The specimens were physiochemically characterized through X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier Transform Infrared spectroscopy. It is found that the microstructure and chemical interactions of the starch/PLA/PEG polymers are correlated with the mechanical characteristics of the blends. Compared to a pure PLA miniplate, the sago starch/PLA/PEG blend shows a 60-80% lower tensile strength and stiffness. However, the flexural strength and elongation break are improved. A degradation study was conducted to observe the mass degradation rate of miniplate for 10 weeks duration. It is found that a maximum concentration of 20% sago starch and 10% of PEG in the PLA blending has promising properties as desired. The blends showed a 100-150% higher degradability rate compared to the pure PLA or a commercial miniplate. The numerical simulation was conducted and confirmed that the miniplate in the mandibular area were shown to be endurable with standard applied loading. The mechanical properties resulted from the experimental work was applied in the Finite Element Analysis to find that our miniplate were in acceptable level. Lastly, the in-vitro test showed that implants are safe to human cell with viability more than 80%. These findings shall support the use of this miniplate in rehabilitating mandibular fractures with faster degradation with acceptance level of mechanical characteristic specifically in case of 4-6 weeks bone union.
Collapse
Affiliation(s)
- Y. Whulanza
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
| | - A. Azadi
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Indonesian Agency for Agricultural Research and Development, Indonesia
| | - S. Supriadi
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
| | - S.F. Rahman
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
| | - M. Chalid
- Department of Metallurgical and Material Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
| | - M. Irsyad
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Medical Technology Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Indonesia
| | - M.H. Nadhif
- Medical Technology Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Indonesia
- Department of Medical Physics, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - P. Kreshanti
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
- Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Indonesia
| |
Collapse
|
3
|
Karagöz İ, Tuna Ö. Effect of melt temperature on product properties of injection-molded high-density polyethylene. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Zhang Y, Liang H, Luo Q, Chen J, Zhao N, Gao W, Pu Y, He B, Xie J. In vivo inducing collagen regeneration of biodegradable polymer microspheres. Regen Biomater 2021; 8:rbab042. [PMID: 34408912 PMCID: PMC8364987 DOI: 10.1093/rb/rbab042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
Biodegradable polymer particles have been used as dermal fillers for pre-clinical and clinical trials. The impact of material properties of polymers is very important to develop products for aesthetic medicine such as dermal fillers. Herein, eight biodegradable polymers with different molecular weights, chemical compositions or hydrophilic-hydrophobic properties were prepared and characterized for systematical study for aesthetic medicine applications. Polymer microspheres with 20-100 μm were prepared. The in vitro degradation study showed that poly (L-lactic-co-glycolic acid) 75/25 microspheres degraded the fastest, whereas poly (L-lactic acid) (PLLA) microspheres with intrinsic viscosity of 6.89 ([η] = 6.89) with the highest molecular weight showed the slowest degradation rate. After these microspheres were fabricated dermal fillers according to the formula of Sculptra®, they were injected subcutaneously into the back skin of rabbits. In vivo results demonstrated that the degradation rate of microspheres strongly correlated with the foreign body reaction and collagen regeneration was induced by microspheres. The microspheres with faster degradation rate induced inflammatory response and the collagen regeneration maintained in shorter time. PLLA ([η] = 3.80) microsphere with a moderate molecular weight and degradation rate could strongly regenerate Type I and III collagen to maintain a long-term aesthetic medicine effect. These properties of size, morphology and degradation behavior would influence the foreign body reaction and collagen regeneration.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Hanwen Liang
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| | - Qian Luo
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| | - Jianlin Chen
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| | - Nan Zhao
- Puliyan (Nanjing) Medical Science & Technology Co. LTD, Nanjing 211500, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jing Xie
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
5
|
Karimi-Avargani M, Bazooyar F, Biria D, Zamani A, Skrifvars M. The promiscuous potential of cellulase in degradation of polylactic acid and its jute composite. CHEMOSPHERE 2021; 278:130443. [PMID: 33836399 DOI: 10.1016/j.chemosphere.2021.130443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/10/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
It has been suggested that cellulolytic enzymes can be effective on the degradation of PLA samples. The idea was investigated by examining the impact of cellulase on degradation of PLA and PLA-jute (64/36) composite in an aqueous medium. The obtained results demonstrated 55% and 61% thickness reduction in PLA and PLA-jute specimens after four months of treatment, respectively. Gel permeation chromatography (GPC) showed significant decline in the number average molecular weight (Mn) approximately equal to 85% and 80% for PLA and PLA-jute in comparison with their control. The poly dispersity index (PDI) of PLA and PLA-jute declined 41% and 49% that disclosed more homogenous distribution in molecular weight of the polymer after treatment with cellulase. The cellulase promiscuity effect on PLA degradation was further revealed by Fourier-transform infrared spectroscopy (FT-IR) analysis where substantial decrease in the peak intensities of the polymer related functional groups were observed. In addition, PLA biodegradation was studied in more detail by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) of control and cellulase treated specimens. The obtained results confirmed the promiscuous function of cellulase in the presence or the absence of jute as the specific substrate of cellulase. This can be considered as a major breakthrough to develop effective biodegradation processes for PLA products at the end of their life cycle.
Collapse
Affiliation(s)
- Mina Karimi-Avargani
- Department of Biotechnology, University of Isfahan, Isfahan, Iran; Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Faranak Bazooyar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Davoud Biria
- Department of Biotechnology, University of Isfahan, Isfahan, Iran.
| | - Akram Zamani
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Mikael Skrifvars
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| |
Collapse
|
6
|
Pavek A, Nartker C, Saleh M, Kirkham M, Khajeh Pour S, Aghazadeh-Habashi A, Barrott JJ. Tissue Engineering Through 3D Bioprinting to Recreate and Study Bone Disease. Biomedicines 2021; 9:551. [PMID: 34068971 PMCID: PMC8156159 DOI: 10.3390/biomedicines9050551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
The applications of 3D bioprinting are becoming more commonplace. Since the advent of tissue engineering, bone has received much attention for the ability to engineer normal bone for tissue engraftment or replacement. While there are still debates on what materials comprise the most durable and natural replacement of normal tissue, little attention is given to recreating diseased states within the bone. With a better understanding of the cellular pathophysiology associated with the more common bone diseases, these diseases can be scaled down to a more throughput way to test therapies that can reverse the cellular pathophysiology. In this review, we will discuss the potential of 3D bioprinting of bone tissue in the following disease states: osteoporosis, Paget's disease, heterotopic ossification, osteosarcoma, osteogenesis imperfecta, and rickets disease. The development of these 3D bioprinted models will allow for the advancement of novel therapy testing resulting in possible relief to these chronic diseases.
Collapse
Affiliation(s)
- Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | | | - Matthew Kirkham
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Sana Khajeh Pour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Ali Aghazadeh-Habashi
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Jared J. Barrott
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| |
Collapse
|
7
|
Gradwohl M, Chai F, Payen J, Guerreschi P, Marchetti P, Blanchemain N. Effects of Two Melt Extrusion Based Additive Manufacturing Technologies and Common Sterilization Methods on the Properties of a Medical Grade PLGA Copolymer. Polymers (Basel) 2021; 13:572. [PMID: 33672918 PMCID: PMC7917935 DOI: 10.3390/polym13040572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Although bioabsorbable polymers have garnered increasing attention because of their potential in tissue engineering applications, to our knowledge there are only a few bioabsorbable 3D printed medical devices on the market thus far. In this study, we assessed the processability of medical grade Poly(lactic-co-glycolic) Acid (PLGA)85:15 via two additive manufacturing technologies: Fused Filament Fabrication (FFF) and Direct Pellet Printing (DPP) to highlight the least destructive technology towards PLGA. To quantify PLGA degradation, its molecular weight (gel permeation chromatography (GPC)) as well as its thermal properties (differential scanning calorimetry (DSC)) were evaluated at each processing step, including sterilization with conventional methods (ethylene oxide, gamma, and beta irradiation). Results show that 3D printing of PLGA on a DPP printer significantly decreased the number-average molecular weight (Mn) to the greatest extent (26% Mn loss, p < 0.0001) as it applies a longer residence time and higher shear stress compared to classic FFF (19% Mn loss, p < 0.0001). Among all sterilization methods tested, ethylene oxide seems to be the most appropriate, as it leads to no significant changes in PLGA properties. After sterilization, all samples were considered to be non-toxic, as cell viability was above 70% compared to the control, indicating that this manufacturing route could be used for the development of bioabsorbable medical devices. Based on our observations, we recommend using FFF printing and ethylene oxide sterilization to produce PLGA medical devices.
Collapse
Affiliation(s)
- Marion Gradwohl
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, F-59000 Lille, France; (M.G.); (F.C.); (P.G.)
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France;
- LATTICE MEDICAL, F-59120 Loos, France;
| | - Feng Chai
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, F-59000 Lille, France; (M.G.); (F.C.); (P.G.)
| | | | - Pierre Guerreschi
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, F-59000 Lille, France; (M.G.); (F.C.); (P.G.)
- Service de Chirurgie Plastique Reconstructrice et Esthétique, CHU de Lille, F-59037 Lille, France
| | - Philippe Marchetti
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France;
- Banque de Tissus, Centre de Biologie-Pathologie, CHU Lille, F-59000 Lille, France
| | - Nicolas Blanchemain
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, F-59000 Lille, France; (M.G.); (F.C.); (P.G.)
| |
Collapse
|
8
|
Next-generation surgical meshes for drug delivery and tissue engineering applications: materials, design and emerging manufacturing technologies. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00108-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Surgical meshes have been employed in the management of a variety of pathological conditions including hernia, pelvic floor dysfunctions, periodontal guided bone regeneration, wound healing and more recently for breast plastic surgery after mastectomy. These common pathologies affect a wide portion of the worldwide population; therefore, an effective and enhanced treatment is crucial to ameliorate patients’ living conditions both from medical and aesthetic points of view. At present, non-absorbable synthetic polymers are the most widely used class of biomaterials for the manufacturing of mesh implants for hernia, pelvic floor dysfunctions and guided bone regeneration, with polypropylene and poly tetrafluoroethylene being the most common. Biological prostheses, such as surgical grafts, have been employed mainly for breast plastic surgery and wound healing applications. Despite the advantages of mesh implants to the treatment of these conditions, there are still many drawbacks, mainly related to the arising of a huge number of post-operative complications, among which infections are the most common. Developing a mesh that could appropriately integrate with the native tissue, promote its healing and constructive remodelling, is the key aim of ongoing research in the area of surgical mesh implants. To this end, the adoption of new biomaterials including absorbable and natural polymers, the use of drugs and advanced manufacturing technologies, such as 3D printing and electrospinning, are under investigation to address the previously mentioned challenges and improve the outcomes of future clinical practice. The aim of this work is to review the key advantages and disadvantages related to the use of surgical meshes, the main issues characterizing each clinical procedure and the future directions in terms of both novel manufacturing technologies and latest regulatory considerations.
Graphic abstract
Collapse
|
9
|
Abstract
Human bones have unique structures and characteristics, and replacing a natural bone in the case of bone fracture or bone diseases is a very complicated problem. The main goal of this paper was to summarize the recent research on polymer materials as bone substitutes and for bone repair. Bone treatment methods, bone substitute materials as well as their advantages and drawbacks, and manufacturing methods were reviewed. Biopolymers are the most promising materials in the field of artificial bones and using biopolymers with the shape memory effect can improve the integration of an artificial bone into the human body by better mimicking the structure and properties of natural bones, decreasing the invasiveness of surgical procedures by producing deployable implants. It has been shown that the application of the rapid prototyping technology for artificial bones allows the customization of bone substitutes for a patient and the creation of artificial bones with a complex structure.
Collapse
Affiliation(s)
- Anastasiia Kashirina
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, PO Box 301, No. 92 West Dazhi Street, Harbin 150001, China
| | - Yongtao Yao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080, China.
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, PO Box 301, No. 92 West Dazhi Street, Harbin 150001, China
| | - Jinsong Leng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080, China.
| |
Collapse
|
10
|
Pimenta de Melo L, Contessi Negrini N, Farè S, de Mello Roesler CR, de Mello Gindri I, Salmoria GV. Thermomechanical and in vitro biological characterization of injection-molded PLGA craniofacial plates. J Appl Biomater Funct Mater 2019; 17:2280800019831599. [PMID: 30841778 DOI: 10.1177/2280800019831599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE: To evaluate the thermomechanical and in vitro biological response of poly(lactic-co-glycolic acid) (PLGA) plates for craniofacial reconstructive surgery. METHODS: PLGA 85/15 craniofacial plates were produced by injection molding by testing two different temperatures (i.e., 240°C, PLGA_lowT, and 280°C, PLGA_highT). The mechanical properties of the produced plates were characterized by three-point bending tests, dynamic mechanical analysis, and residual stress. Crystallinity and thermal transitions were investigated by differential scanning calorimetry. Finally, in vitro cell interaction was evaluated by using SAOS-2 as cell model. Indirect cytotoxicity tests (ISO 10-993) were performed to prove the absence of cytotoxic release. Cells were then directly seeded on the plates and their viability, morphology, and functionality (ALP) checked up to 21 days of culture. RESULTS: A similar performance of PLGA_lowT and PLGA_highT plates was verified in the three-point bending test and dynamic mechanical analyses. Also, the two processing temperatures did not influence the in vitro cell interaction. Cytotoxicity and ALP activity were similar for the PLGA plates and control. Cell results demonstrated that the PLGA plates supported cell attachment and proliferation. Furthermore, energy-dispersive X-ray spectroscopy revealed the presence of sub-micron particles, which were identified as inorganic mineral deposits resulting from osteoblast activity. CONCLUSION: The present work demonstrated that the selected processing temperatures did not affect the material performance. PLGA plates showed good mechanical properties for application in craniofacial reconstructive surgery and adequate biological properties.
Collapse
Affiliation(s)
- Liliane Pimenta de Melo
- 1 Biomechanics Engineering Laboratory, University Hospital (HU), Federal University of Santa Catarina, Florianópolis, SC, Brazil.,2 NIMMA Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.,3 Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Nicola Contessi Negrini
- 3 Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,4 INSTM, Consorzio Nazionale di Scienza e Tecnologia dei Materiali, Milan, Italy
| | - Silvia Farè
- 3 Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,4 INSTM, Consorzio Nazionale di Scienza e Tecnologia dei Materiali, Milan, Italy
| | - Carlos Rodrigo de Mello Roesler
- 1 Biomechanics Engineering Laboratory, University Hospital (HU), Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Izabelle de Mello Gindri
- 1 Biomechanics Engineering Laboratory, University Hospital (HU), Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Gean Vitor Salmoria
- 1 Biomechanics Engineering Laboratory, University Hospital (HU), Federal University of Santa Catarina, Florianópolis, SC, Brazil.,2 NIMMA Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
11
|
Srisuwan Y, Baimark Y, Suttiruengwong S. Toughening of Poly(L-lactide) with Blends of Poly( ε-caprolactone- co-L-lactide) in the Presence of Chain Extender. Int J Biomater 2018; 2018:1294397. [PMID: 30275834 PMCID: PMC6157148 DOI: 10.1155/2018/1294397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
A poly(ε-caprolactone-co-L-lactide) copolyester was synthesized and employed to toughen poly(L-lactide) (PLLA) by reactive melt blending in the presence of an epoxy-based chain extender. The effects of chain extension reaction and copolyester content on properties of PLLA-based blends were studied. The chain extension reaction reduced crystallinity and melt flow index of PLLA/copolyester blends. Meanwhile the copolyester blending improved the crystallinities of the chain-extended PLLA up to 20 wt% copolyester. The phase compatibility between PLLA matrix and dispersed copolyester phases was enhanced by the chain extension reaction. The impact strength of chain-extended PLLA increased with the contents of copolyester and chain extender.
Collapse
Affiliation(s)
- Yaowalak Srisuwan
- Biodegradable Polymers Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Yodthong Baimark
- Biodegradable Polymers Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom 73000, Thailand
| |
Collapse
|