1
|
Thoa LTK, Thao TTP, Nguyen-Thi ML, Chung ND, Ooi CW, Park SM, Lan TT, Quang HT, Khoo KS, Show PL, Huy ND. Microbial biodegradation of recalcitrant synthetic dyes from textile-enriched wastewater by Fusarium oxysporum. CHEMOSPHERE 2023; 325:138392. [PMID: 36921772 DOI: 10.1016/j.chemosphere.2023.138392] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The present study reported the improvement of biological treatment for the removal of recalcitrant dyes including aniline blue, reactive black 5, orange II, and crystal violet in contaminated water. The biodegradation efficiency of Fusarium oxysporum was significantly enhanced by the addition of mediators and by adjusting the biomass density and nutrient composition. A supplementation of 1% glucose in culture medium improved the biodegradation efficiency of aniline blue, reactive black 5, orange II, and crystal violet by 2.24, 1.51, 4.46, and 2.1 folds, respectively. Meanwhile, the addition of mediators to culture medium significantly increased the percentages of total removal for aniline blue, reactive black 5, orange II, and crystal violet, reaching 86.07%, 68.29%, 76.35%, and 95.3%, respectively. Interestingly, the fungal culture supplemented with 1% remazol brilliant blue R boosted the biodegradation up to 97.06%, 89.86%, 91.38%, and 86.67% for aniline blue, reactive black 5, orange II, and crystal violet, respectively. Under optimal culture conditions, the fungal culture could degrade these synthetic dyes concentration up to 104 mg/L. The present study demonstrated that different recalcitrant dye types can be efficiently degraded using microorganism such as F. oxysporum.
Collapse
Affiliation(s)
- Le Thi Kim Thoa
- Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | | | - My-Le Nguyen-Thi
- Hearing Research Laboratory, Samsung Medical Center, 06351, Seoul, South Korea
| | - Nguyen Duc Chung
- University of Agriculture and Forestry, Hue University, Hue, 49000, Viet Nam
| | - Chien Wei Ooi
- Chemical Engineering Discipline and Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Seung-Moon Park
- Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Tran Thuy Lan
- Insitute of Biotechnology, Hue University, Hue, 49000, Viet Nam
| | - Hoang Tan Quang
- Insitute of Biotechnology, Hue University, Hue, 49000, Viet Nam
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Nguyen Duc Huy
- Insitute of Biotechnology, Hue University, Hue, 49000, Viet Nam.
| |
Collapse
|
2
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
3
|
Screening of fungi from the phylum Basidiomycota for degradation of boar taint aroma compounds. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Brazkova M, Koleva R, Angelova G, Yemendzhiev H. Ligninolytic enzymes in Basidiomycetes and their application in xenobiotics degradation. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variety of microorganisms have already proven their capabilities for degradation of wide range of wastes with anthropogenic nature. These pollutants, both liquid and solids, also include so called xenobiotics like phenol and its derivatives, PAHs, dyes, pesticides, pharmaceuticals, etc. Xenobiotics as bisphenol A (BPA), chlorhexidine (CHX), octenidine (OCT), other disinfectants and antiseptics have high ecotoxicological impact. Moreover, they can also impair our quality of life and our health interfering different metabolic and hormone receptors pathways in human body. Chemical treatment of such wastes is not a viable option because of its poor socio-economics and environmental merits. Therefore, applying effective, ecofriendly and cheap treatment methods is of great importance. Basidiomycetes are extensively investigated for their abilities to degrade numerous pollutants and xenobiotics. Through their extracellular ligninolytic enzymes they are capable of reducing or completely removing wide range of hazardous compounds. These enzymes can be categorized in two groups: oxidases (laccase) and peroxidases (manganese peroxidase, lignin peroxidase, versatile peroxidase). Due to the broad substrate specificity of the secreted enzymes Basidiomycetes can be applied as a powerful tool for bioremediation of diverse xenobiotics and recalcitrant compounds.
Collapse
|
5
|
Perkins AK, Rose AL, Grossart HP, Rojas-Jimenez K, Barroso Prescott SK, Oakes JM. Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata. Front Microbiol 2021; 12:726138. [PMID: 34733248 PMCID: PMC8558676 DOI: 10.3389/fmicb.2021.726138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cellulose and chitin are the most abundant polymeric, organic carbon source globally. Thus, microbes degrading these polymers significantly influence global carbon cycling and greenhouse gas production. Fungi are recognized as important for cellulose decomposition in terrestrial environments, but are far less studied in marine environments, where bacterial organic matter degradation pathways tend to receive more attention. In this study, we investigated the potential of fungi to degrade kelp detritus, which is a major source of cellulose in marine systems. Given that kelp detritus can be transported considerable distances in the marine environment, we were specifically interested in the capability of endophytic fungi, which are transported with detritus, to ultimately contribute to kelp detritus degradation. We isolated 10 species and two strains of endophytic fungi from the kelp Ecklonia radiata. We then used a dye decolorization assay to assess their ability to degrade organic polymers (lignin, cellulose, and hemicellulose) under both oxic and anoxic conditions and compared their degradation ability with common terrestrial fungi. Under oxic conditions, there was evidence that Ascomycota isolates produced cellulose-degrading extracellular enzymes (associated with manganese peroxidase and sulfur-containing lignin peroxidase), while Mucoromycota isolates appeared to produce both lignin and cellulose-degrading extracellular enzymes, and all Basidiomycota isolates produced lignin-degrading enzymes (associated with laccase and lignin peroxidase). Under anoxic conditions, only three kelp endophytes degraded cellulose. We concluded that kelp fungal endophytes can contribute to cellulose degradation in both oxic and anoxic environments. Thus, endophytic kelp fungi may play a significant role in marine carbon cycling via polymeric organic matter degradation.
Collapse
Affiliation(s)
- Anita K. Perkins
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
- Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Andrew L. Rose
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
- Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Selva K. Barroso Prescott
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Joanne M. Oakes
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
6
|
Andriani A, Yanto DHY. Comparative kinetic study on biodecolorization of synthetic dyes by Bjerkandera adusta SM46 in alginate beads-packed bioreactor system and shaking culture under saline-alkaline stress. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1929193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ade Andriani
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, Indonesia
| |
Collapse
|
7
|
Syafiuddin A, Fulazzaky MA. Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi. ACTA ACUST UNITED AC 2020; 29:e00573. [PMID: 33364184 PMCID: PMC7753926 DOI: 10.1016/j.btre.2020.e00573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
The release of synthetic dye into the environment causing abnormal growth of phytoplankton may lead to a decline in the photosynthetic performance of aquatic ecosystem. Scientific knowledge of Remazol Brilliant Blue R (RBBR) decolorization is essential for designing the engineered bioremediation systems of employing fungal mycelium. The biodegradation of RBBR dye mediated by an appropriate fungus was analyzed using the modified mass transfer factor models to get better understanding on the decolorization kinetics and mechanisms of external and internal mass transfer. The results showed that the limited capacities of the kinetic and isotherm models are still not able to comprehensively explain many important phenomena of RBBR decolorization mediated by the T. citrinoviride, T. koningiopsis and Pestalotiopsis sp. strains. The rate-limiting step of RBBR decolorization depends on the EMT resistance and the vegetative growth rates of T. citrinoviride, T. koningiopsis and Pestalotiopsis sp. strains can be described by second-order polynomial equation. The analysis of decolorization performance may provide a new insight on the role of fungus in the degradation of RBBR dye.
Collapse
Affiliation(s)
- Achmad Syafiuddin
- Department of Public Health, Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Jalan Raya Jemursari No.57, Jemur Wonosari, Surabaya 60237, Indonesia
| | - Mohamad Ali Fulazzaky
- Environmental Engineering and Management Research Group, Ton Duc Thang University, No.19, Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Viet Nam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, No.19, Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Viet Nam
| |
Collapse
|
8
|
Ligninolytic Enzyme Production and Decolorization Capacity of Synthetic Dyes by Saprotrophic White Rot, Brown Rot, and Litter Decomposing Basidiomycetes. J Fungi (Basel) 2020; 6:jof6040301. [PMID: 33228232 PMCID: PMC7711621 DOI: 10.3390/jof6040301] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 01/18/2023] Open
Abstract
An extensive screening of saprotrophic Basidiomycetes causing white rot (WR), brown rot (BR), or litter decomposition (LD) for the production of laccase and Mn-peroxidase (MnP) and decolorization of the synthetic dyes Orange G and Remazol Brilliant Blue R (RBBR) was performed. The study considered in total 150 strains belonging to 77 species. The aim of this work was to compare the decolorization and ligninolytic capacity among different ecophysiological and taxonomic groups of Basidiomycetes. WR strains decolorized both dyes most efficiently; high decolorization capacity was also found in some LD fungi. The enzyme production was recorded in all three ecophysiology groups, but to a different extent. All WR and LD fungi produced laccase, and the majority of them also produced MnP. The strains belonging to BR lacked decolorization capabilities. None of them produced MnP and the production of laccase was either very low or absent. The most efficient decolorization of both dyes and the highest laccase production was found among the members of the orders Polyporales and Agaricales. The strains with high MnP activity occurred across almost all fungal orders (Polyporales, Agaricales, Hymenochaetales, and Russulales). Synthetic dye decolorization by fungal strains was clearly related to their production of ligninolytic enzymes and both properties were determined by the interaction of their ecophysiology and taxonomy, with a more relevant role of ecophysiology. Our screening revealed 12 strains with high decolorization capacity (9 WR and 3 LD), which could be promising for further biotechnological utilization.
Collapse
|
9
|
Gianolini JE, Britos CN, Mulreedy CB, Trelles JA. Hyperstabilization of a thermophile bacterial laccase and its application for industrial dyes degradation. 3 Biotech 2020; 10:288. [PMID: 32550107 PMCID: PMC7270286 DOI: 10.1007/s13205-020-02277-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, a novel extracellular laccase isolated from Geobacillus stearothermophilus ATCC 10149 was entrapped in a bionanocomposite matrix consisting of copper alginate (Cu-alginate) supplemented with the nanoclay bentonite. After optimization, this nanobiocatalyst was able to degrade up to 90% of Remazol Brilliant Blue R (RBBR) without the addition of redox mediators and retained 70% of its initial activity for at least 1440 h, equivalent to more than 288 uses. The incorporation of nanoclay allowed alginate beads to be used in alkaline pH and strengthened its mechanical properties. Besides, this thermophilic laccase was able to decolorize other structurally different synthetic dyes such as Methyl Orange, Malachite Green and Indigo Carmine. These preliminary results suggested that the nanobiocatalyst could be a suitable option for dye decolorization and be further developed for large scale bioremediation of toxic dyes.
Collapse
Affiliation(s)
- Julián E. Gianolini
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB CABA, Argentina
| | - Claudia N. Britos
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
| | - Carlos B. Mulreedy
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
| | - Jorge A. Trelles
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB CABA, Argentina
| |
Collapse
|
10
|
Postemsky PD, Bidegain MA, Lluberas G, Lopretti MI, Bonifacino S, Inés Landache M, Zygadlo JA, Fernández-Lahore M, Omarini AB. Biorefining via solid-state fermentation of rice and sunflower by-products employing novel monosporic strains from Pleurotus sapidus. BIORESOURCE TECHNOLOGY 2019; 289:121692. [PMID: 31265963 DOI: 10.1016/j.biortech.2019.121692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Pleurotus sapidus monokaryotic strains (Mk) were screened as a novel source of mycelia to valorize rice straw (RS), rice husks (RH) and sunflower seed hulls (SSH) into value-added products through solid-state fermentation (SSF). P. sapidus Dk3174 basidiospores were cultured in the presence of Remazol Brillant Blue R for strain selection, revealing the ligninolytic ability of emerging colonies. Further screening demonstrated the intraspecific variability in dye degradation and enzyme production of 63 strains. Growth rate, biomass and enzyme production in plates containing RS, RH or SSH pointed at MkP6 as a suitable strain for pilot-scale SSF. MkP6 presented a similar laccase profile as the parental Dk3174, being greater in pasteurized substrates (300-1200 U/Kg) than in sterilized substrates (30-250 U/Kg). Peroxidase represented 25% of the total ligninolytic activity measured. The SSH fermented biomass with MkP6 obtained good yields of nanocellulose (67%) and the saccharide release for ethanol production increased by 3-4 times.
Collapse
Affiliation(s)
- Pablo D Postemsky
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-UNS/CONICET), Camino de La Carrindaga Km7, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Maximiliano A Bidegain
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-UNS/CONICET), Camino de La Carrindaga Km7, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Gabriela Lluberas
- Universidad de la República (UdelaR), Facultad de Ciencias, CIN, Mataojos s/n, Malvin Norte, Montevideo, 11200 Montevideo, Uruguay
| | - Mary I Lopretti
- Universidad de la República (UdelaR), Facultad de Ciencias, CIN, Mataojos s/n, Malvin Norte, Montevideo, 11200 Montevideo, Uruguay
| | - Silvana Bonifacino
- Universidad de la República (UdelaR), Facultad de Ciencias, CIN, Mataojos s/n, Malvin Norte, Montevideo, 11200 Montevideo, Uruguay
| | - María Inés Landache
- Downstream Bioprocessing Laboratory, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal, IMBIV-UNC/CONICET, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| | - Marcelo Fernández-Lahore
- Downstream Bioprocessing Laboratory, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Alejandra B Omarini
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa, INCITAP-UNLPam/CONICET, Mendoza 109, L6300DUG Santa Rosa, La Pampa, Argentina.
| |
Collapse
|
11
|
Rodríguez-Couto S. Fungal Laccase: A Versatile Enzyme for Biotechnological Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-10480-1_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent Improvement. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|