1
|
Gao R, Mao J. Noncoding RNA-Mediated Epigenetic Regulation in Hepatic Stellate Cells of Liver Fibrosis. Noncoding RNA 2024; 10:44. [PMID: 39195573 DOI: 10.3390/ncrna10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is a significant contributor to liver-related disease mortality on a global scale. Despite this, there remains a dearth of effective therapeutic interventions capable of reversing this condition. Consequently, it is imperative that we gain a comprehensive understanding of the underlying mechanisms driving liver fibrosis. In this regard, the activation of hepatic stellate cells (HSCs) is recognized as a pivotal factor in the development and progression of liver fibrosis. The role of noncoding RNAs (ncRNAs) in epigenetic regulation of HSCs transdifferentiation into myofibroblasts has been established, providing new insights into gene expression changes during HSCs activation. NcRNAs play a crucial role in mediating the epigenetics of HSCs, serving as novel regulators in the pathogenesis of liver fibrosis. As research on epigenetics expands, the connection between ncRNAs involved in HSCs activation and epigenetic mechanisms becomes more evident. These changes in gene regulation have attracted considerable attention from researchers in the field. Furthermore, epigenetics has contributed valuable insights to drug discovery and the identification of therapeutic targets for individuals suffering from liver fibrosis and cirrhosis. As such, this review offers a thorough discussion on the role of ncRNAs in the HSCs activation of liver fibrosis.
Collapse
Affiliation(s)
- Ruoyu Gao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
2
|
Nunez Lopez YO, Casu A, Kovacova Z, Petrilli AM, Sideleva O, Tharp WG, Pratley RE. Coordinated regulation of gene expression and microRNA changes in adipose tissue and circulating extracellular vesicles in response to pioglitazone treatment in humans with type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:955593. [PMID: 36120427 PMCID: PMC9471675 DOI: 10.3389/fendo.2022.955593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Pioglitazone, a PPARγ agonist, is used to treat type 2 diabetes (T2D). PPARγ is highly expressed in adipose tissue (AT), however the effects of pioglitazone to improve insulin sensitivity are also evident in other tissues and PPARγ agonism has been shown to alter cancer derived extracellular vesicle (EV)-miRNAs. We hypothesized that pioglitazone modifies the cargo of circulating AT-derived EVs to alter interorgan crosstalk in people with diabetes. We tested our hypothesis in a 3-month trial in which 24 subjects with T2D were randomized to treatment with either pioglitazone 45 mg/day or placebo (NCT00656864). Levels of 42 adipocyte-derived EV-miRNAs were measured in plasma EVs using low density TaqMan arrays. Levels of differentially expressed EV-miRNAs and their most relevant target genes were also measure in adipose tissue from the same participants, using individual TaqMan assays. Levels of 5 miRNAs (i.e., miR-7-5p, miR-20a-5p, miR-92a-3p, miR-195-5p, and miR-374b-5p) were significantly downregulated in EVs in response to pioglitazone treatment relative to placebo. The opposite occurred for miR-195-5p in subcutaneous AT. Changes in miRNA expression in EVs and AT correlated with changes in suppression of lipolysis and improved insulin sensitivity, among others. DICER was downregulated and exosomal miRNA sorting-related genes YBX1 and hnRNPA2B1 displayed a downregulation trend in AT. Furthermore, analysis of EV-miRNA targeted genes identified a network of transcripts that changed in a coordinated manner in AT. Collectively, our results suggest that some beneficial pharmacologic effects of pioglitazone are mediated by adipose-specific miRNA regulation and exosomal/EV trafficking. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT00656864.
Collapse
Affiliation(s)
- Yury O. Nunez Lopez
- Diabetes Program, Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Anna Casu
- Diabetes Program, Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Zuzana Kovacova
- Diabetes Program, Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Alejandra M. Petrilli
- Diabetes Program, Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Olga Sideleva
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - William G. Tharp
- Department of Anesthesiology, University of Vermont Medical Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Richard E. Pratley
- Diabetes Program, Translational Research Institute, AdventHealth, Orlando, FL, United States
- *Correspondence: Richard E. Pratley,
| |
Collapse
|
3
|
Ding H, Yao J, Xie H, Wang C, Chen J, Wei K, Ji Y, Liu L. MicroRNA-195-5p Downregulation Inhibits Endothelial Mesenchymal Transition and Myocardial Fibrosis in Diabetic Cardiomyopathy by Targeting Smad7 and Inhibiting Transforming Growth Factor Beta 1-Smads-Snail Pathway. Front Physiol 2021; 12:709123. [PMID: 34658906 PMCID: PMC8514870 DOI: 10.3389/fphys.2021.709123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus, which is associated with fibrosis and microRNAs (miRs). This study estimated the mechanism of miR-195-5p in endothelial mesenchymal transition (EndMT) and myocardial fibrosis in DCM. After the establishment of DCM rat models, miR-195-5p was silenced by miR-195-5p antagomir. The cardiac function-related indexes diastolic left ventricular anterior wall (LVAW, d), systolic LVAW (d), diastolic left ventricular posterior wall (LVPW, d), systolic LVPW (d), left ventricular ejection fraction (LVEF), and fractional shortening (FS) were measured and miR-195-5p expression in myocardial tissue was detected. Myocardial fibrosis, collagen deposition, and levels of fibrosis markers were detected. Human umbilical vein endothelial cells (HUVECs) were exposed to high glucose (HG) and miR-195-5p was silenced. The levels of fibrosis proteins, endothelial markers, fibrosis markers, EndMT markers, and transforming growth factor beta 1 (TGF-β1)/Smads pathway-related proteins were measured in HUVECs. The interaction between miR-195-5p and Smad7 was verified. In vivo, miR-195-5p was highly expressed in the myocardium of DCM rats. Diastolic and systolic LVAW, diastolic and systolic LVPW were increased and LVEF and FS were decreased. Inhibition of miR-195-5p reduced cardiac dysfunction, myocardial fibrosis, collagen deposition, and EndMT, promoted CD31 and VE-cadehrin expressions, and inhibited α-SMA and vimentin expressions. In vitro, HG-induced high expression of miR-195-5p and the expression changes of endothelial markers CD31, VE-cadehrin and fibrosis markers α-SMA and vimentin were consistent with those in vivo after silencing miR-195-5p. In mechanism, miR-195-5p downregulation blocked EndMT by inhibiting TGF-β1-smads pathway. Smad7 was the direct target of miR-195-5p and silencing miR-195-5p inhibited EndMT by promoting Smad7 expression. Collectively, silencing miR-195-5p inhibits TGF-β1-smads-snail pathway by targeting Smad7, thus inhibiting EndMT and alleviating myocardial fibrosis in DCM.
Collapse
Affiliation(s)
- Huaisheng Ding
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jianhui Yao
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Hongxiang Xie
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Chengyu Wang
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jing Chen
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Kaiyong Wei
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Yangyang Ji
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Lihong Liu
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| |
Collapse
|
4
|
Yan Y, Zeng J, Xing L, Li C. Extra- and Intra-Cellular Mechanisms of Hepatic Stellate Cell Activation. Biomedicines 2021; 9:biomedicines9081014. [PMID: 34440218 PMCID: PMC8391653 DOI: 10.3390/biomedicines9081014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatic fibrosis is characterized by the pathological accumulation of extracellular matrix (ECM) in the liver resulting from the persistent liver injury and wound-healing reaction induced by various insults. Although hepatic fibrosis is considered reversible after eliminating the cause of injury, chronic injury left unchecked can progress to cirrhosis and liver cancer. A better understanding of the cellular and molecular mechanisms controlling the fibrotic response is needed to develop novel clinical strategies. It is well documented that activated hepatic stellate cells (HSCs) is the most principal cellular players promoting synthesis and deposition of ECM components. In the current review, we discuss pathways of HSC activation, emphasizing emerging extra- and intra-cellular signals that drive this important cellular response to hepatic fibrosis. A number of cell types and external stimuli converge upon HSCs to promote their activation, including hepatocytes, liver sinusoidal endothelial cells, macrophages, cytokines, altered ECM, hepatitis viral infection, enteric dysbiosis, lipid metabolism disorder, exosomes, microRNAs, alcohol, drugs and parasites. We also discuss the emerging signaling pathways and intracellular events that individually or synergistically drive HSC activation, including TGFβ/Smad, Notch, Wnt/β-catenin, Hedgehog and Hippo signaling pathways. These findings will provide novel potential therapeutic targets to arrest or reverse fibrosis and cirrhosis.
Collapse
|
5
|
Wang H, Sui ZL, Wu XX, Tang P, Zhang HD, Yu ZT. Reversal of Chemotherapy Resistance to Cisplatin in NSCLC by miRNA-195-5p via Targeting the FGF2 Gene. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:497-508. [PMID: 33953601 PMCID: PMC8092352 DOI: 10.2147/pgpm.s302755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Objective To explore the mechanism of miR-195-5p in the pathogenesis non-small cell lung cancer (NSCLC) and cisplatin resistance. Methods The function of miR-195-5p in NSCLC and cisplatin resistance were determined by MTT, scratch assay, transwell assay, and nude mice xenograft experiments. miR-195-5p target gene was identified by dual-luciferase reporter assays and real-time PCR analysis. Results miR-195-5p content was lower in A549/DDP than that in A549 cells, with reduced chemotherapy sensitivity and increased cell invasion and migration ability. The loss-of-function and gain-of-function assays illustrated that miR-195-5p might have increased the chemosensitivity to cisplatin in the A549/DDP cells and decreased cell migration and invasion. FGF2 is a negatively correlated action target of miR-195-5p. miR-195-5p might affect EMT by inhibiting FGF2. Overexpression of FGF2 resulted in enhanced cisplatin resistance in the cells, while miR-195-5p might have reversed this resistance. Conclusion Overall, miR-195-5p might target FGF2 to reduce cisplatin resistance in A549/DDP cells and enhance chemosensitivity.
Collapse
Affiliation(s)
- Hao Wang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China.,Department of Surgical Oncology, Baotou Cancer Hospital, Baotou, People's Republic of China
| | - Zhi-Lin Sui
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Xian-Xian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Hong-Dian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Zhen-Tao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People's Republic of China
| |
Collapse
|
6
|
Ezhilarasan D. MicroRNA interplay between hepatic stellate cell quiescence and activation. Eur J Pharmacol 2020; 885:173507. [PMID: 32858048 DOI: 10.1016/j.ejphar.2020.173507] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
Abstract
Hepatic stellate cells (HSCs) activation play a significant role in the progression of hepatic fibrosis. During chronic liver diseases, hepatocytes are damaged severely and secrete several pro-inflammatory markers and profibrogenic cytokines via modulation of a variety of signaling pathways that are responsible for the activation of HSCs. The microRNAs (miRNA or miR) have the potential to modulate fibrogenic signaling pathways in HSCs. A variety of miRNAs are identified as profibrogenic and are capable of activating HSCs by modulating fibrosis-associated signaling pathways such as transforming growth factor-β/Smad, Wnt/β-catenin, Hedgehog, Snail and Notch in the injured liver. On the other hand, HSCs also have certain antifibrotic miRNAs and these include miR-16, miR-19b, miR-29, miR-30, miR-101, miR-122, miR-133a, miR-144, miR-146a, miR-150-5p, miR-155, miR-195, miR-200a, miR-214, miR-335, miR-370, miR-454, miR-483, etc. are responsible for maintenance of the quiescent phenotype of normal HSCs, apoptosis induction and phenotypic reversion of activated HSCs, inhibition of HSCs proliferation, suppression of the extracellular matrix-associated gene expressions, etc. Thus, understanding of HSCs specific miRNAs regulation may provide new ideas for the targeted therapy of hepatic fibrosis at molecular level in the near future. Therefore, this review focusses on the modulation of miRNAs profile during the HSCs activation in the fibrotic liver.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), No.162, PH Road, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
7
|
Liu D, Han P, Gao C, Gao W, Yao X, Liu S. microRNA-155 Modulates Hepatic Stellate Cell Proliferation, Apoptosis, and Cell Cycle Progression in Rats With Alcoholic Hepatitis via the MAPK Signaling Pathway Through Targeting SOCS1. Front Pharmacol 2020; 11:270. [PMID: 32317960 PMCID: PMC7154100 DOI: 10.3389/fphar.2020.00270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to investigate the regulatory function of the non-coding microRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) in alcoholic hepatitis (AH) and its potential mechanism associated with the mitogen-activated protein kinase (MAPK) signaling pathway. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured in a rat model of AH. The biological prediction website microRNA.org and dual-luciferase reporter gene assay were used to identify whether SOCS1 was a direct target of miR-155, and the effects of miR-155 and SOCS1 on the viability, cycle progression, and apoptosis of hepatic stellate cells were assessed using RT-qPCR, Western blot assay, MTT assay, Annexin V/PI double staining, and PI single staining. The levels of ALT, AST, MDA, and TBIL and the liver cell morphology were all prominently changed in AH model rats. miR-155 suppressed SOCS1 by specifically binding to SOCS1-3'-UTR to activate the MAPK signaling pathway. SOCS1 had low expression while miR-155 was highly expressed in AH rats. miR-155 promoted hepatic stellate cell viability and cycle progression and reduced cell apoptosis by silencing SOCS1. Together, we find that silenced miR-155 could upregulate SOCS1 and inactivate the MAPK signaling pathway, thereby inhibiting the proliferation of alcoholic hepatic stellate cells and promoting cell apoptosis.
Collapse
Affiliation(s)
- Dengtao Liu
- Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Ping Han
- Department of Pulmonary and Critical Care Medicine, Linyi People's Hospital, Linyi, China
| | - Chunhai Gao
- Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Wei Gao
- Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Xiaocui Yao
- Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Shulan Liu
- Department of Imaging, Linyi People's Hospital, Linyi, China
| |
Collapse
|
8
|
Chae DK, Park J, Cho M, Ban E, Jang M, Yoo YS, Kim EE, Baik JH, Song EJ. MiR-195 and miR-497 suppress tumorigenesis in lung cancer by inhibiting SMURF2-induced TGF-β receptor I ubiquitination. Mol Oncol 2019; 13:2663-2678. [PMID: 31581360 PMCID: PMC6887584 DOI: 10.1002/1878-0261.12581] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
SMURF2 is a member of the HECT family of E3 ubiquitin ligases that have important roles as a negative regulator of transforming growth factor‐β (TGF‐β) signaling through ubiquitin‐mediated degradation of TGF‐β receptor I. However, the regulatory mechanism of SMURF2 is largely unknown. In this study, we identified that micro(mi)R‐195 and miR‐497 putatively target SMURF2 using several target prediction databases. Both miR‐195 and miR‐497 bind to the 3′‐UTR of the SMURF2 mRNA and inhibit SMURF2 expression. Furthermore, miR‐195 and miR‐497 regulate SMURF2‐dependent TβRI ubiquitination and cause the activation of the TGF‐β signaling pathway in lung cancer cells. Upregulation of miR‐195 and miR‐497 significantly reduced cell viability and colony formation through the activation of TGF‐β signaling. Interestingly, miR‐195 and miR‐497 also reduced the invasion ability of lung cancer cells when cells were treated with TGF‐β1. Subsequent in vivo studies in xenograft nude mice model revealed that miR‐195 and miR‐497 repress tumor growth. These findings demonstrate that miR‐195 and miR‐497 act as a tumor suppressor by suppressing ubiquitination‐mediated degradation of TGF‐β receptors through SMURF2, and suggest that miR‐195 and miR‐497 are potential therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Dong-Kyu Chae
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Moonsoo Cho
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Eunmi Ban
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Mihue Jang
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Young Sook Yoo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Ja-Hyun Baik
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
9
|
Song LY, Ma YT, Fang WJ, He Y, Wu JL, Zuo SR, Deng ZZ, Wang SF, Liu SK. Inhibitory effects of oxymatrine on hepatic stellate cells activation through TGF-β/miR-195/Smad signaling pathway. Altern Ther Health Med 2019; 19:138. [PMID: 31221141 PMCID: PMC6585021 DOI: 10.1186/s12906-019-2560-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxymatrine (OM), a quinolizidine alkaloid extracted from a herb Sophorae Flavescentis Radix, has been used to treat liver fibrotic diseases. However, the mechanism of its anti-fibrosis effects is still unclear. TGF-β/Smad signaling and miR-195 have been proved to paly an important role in hepatic stellate cells (HSCs) activation and liver fibrosis. In this study, we investigated whether OM could inhibit HSCs activation through TGF-β1/miR-195/Smads signaling or not. METHODS First, the effects of OM on HSC-T6 in different concentrations and time points were tested by MTT assay. We choose three appropriate concentrations of OM as treatment concentrations in following experiment. By Quantitative Real-time PCR and Western Blot, then we investigated the effect of OM on miR-195, Smad7 and α-SMA's expressions to prove the correlation between OM and the TGF-β1/miR-195/Smads signaling. Last, miR-195 mimic and INF-γ were used to investigate the relation between miR-195 and OM in HSC activation. RESULTS Our results showed that the proliferation of HSC was significantly inhibited when OM concentration was higher than 200 μg/mL after 24 h, 100 μg/mL after 48 h and 10 μg/mL after 72 h. The IC50 of OM after 24, 48 and 72 h were 539, 454, 387 μg/mL respectively. OM could down-regulate miR-195 and α-SMA (P < 0.01), while up-regulate Smad7 (P < 0.05). In HSC-T6 cells transfected with miR-195 mimic and pretreated with OM, miR-195 and α-SMA were up-regulated (P < 0.05), and Smad7 was down-regulated (P < 0.05) . CONCLUSIONS Given these results, OM could inhibit TGF-β1 induced activation of HSC-T6 proliferation in a dose-dependent and time-dependent manner to some extent. We proved that OM inhibited HSC activation through down-regulating the expression of miR-195 and up-regulating Smad7.
Collapse
|
10
|
Ren Y, Li H, Xie W, Wei N, Liu M. MicroRNA‑195 triggers neuroinflammation in Parkinson's disease in a Rho‑associated kinase 1‑dependent manner. Mol Med Rep 2019; 19:5153-5161. [PMID: 31059087 DOI: 10.3892/mmr.2019.10176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/28/2018] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder occurring in older individuals. Mechanistically, neuroinflammation is a central pathological change in the progression of PD. Activation of microglia is widely considered to be a major trigger for neuroinflammation. Certain microRNAs (miRs) are key factors in inhibiting or stimulating inflammation during the occurrence and development of PD, among which miR‑195 may be a potential crucial biomarker. However, the underlying pathological mechanisms remain unclear. To investigate the pathogenesis of PD, lipopolysaccharide (LPS) was used to establish an in vitro model of microglia activation in the present study. It was revealed that miR‑195 expression was decreased in LPS‑stimulated BV2 cells, suggesting a potential mechanism of action of miR‑195 on microglia activation. Furthermore, gain‑ and loss‑of‑function experiments were performed by successful transfection of microglia with miR‑195 mimics or inhibitors. The results demonstrated that miR‑195 overexpression inhibited the release of pro‑inflammatory cytokines, including inducible nitric oxide synthase, interleukin‑6 (IL‑6) and tumor necrosis factor‑α, but induced the release of anti‑inflammatory cytokines in LPS‑treated BV2 cells, including IL‑4 and IL‑10. In addition, Rho‑associated kinase 1 (ROCK1), which is negatively regulated by miR‑195, was increased in LPS‑stimulated BV2 cells. ROCK1 knockdown with small interfering RNA exhibited the same effect as miR‑195 overexpression on regulating microglia status, suggesting that the miR‑195/ROCK1 interaction serves a central role in inducing microglia activation. Furthermore, inhibition of ROCK1 impaired cell viability and proliferation but induced cell apoptosis in LPS‑treated miR‑195‑deficient BV2 cells. The present results suggest that miR‑195 is a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Yi Ren
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Huajie Li
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Wei Xie
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ning Wei
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Meng Liu
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
11
|
MicroRNA Expression in Focal Nodular Hyperplasia in Comparison with Cirrhosis and Hepatocellular Carcinoma. Pathol Oncol Res 2018; 25:1103-1109. [PMID: 30411298 DOI: 10.1007/s12253-018-0528-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
The liver disease focal nodular hyperplasia (FNH) has several histological features that resemble hepatic cirrhosis. Since cirrhosis may develop further into hepatocellular carcinoma (HCC) contrary to FNH, the aim of the present study was to identify microRNAs (miRNA), which, by their altered expression levels, may be associated with the benign, tumor-like nature of FNH. Altogether 106 surgically removed formalin-fixed paraffin-embedded liver samples were selected, including 22 FNH, 45 cirrhosis, 24 HCC and 15 normal liver tissues. Etiology of the cases of cirrhosis and HCC includes hepatitis C and alcoholism and the HCC cases developed in cirrhotic livers. Relative expression levels of 14 miRNAs were determined using TaqMan MicroRNA Assays. In comparison to normal liver, the levels of miR-34a and miR-224 were elevated not only in FNH but also in cirrhosis and HCC, while the expression of miR-17-5p, miR-18a and miR-210 was decreased in FNH. Further, the levels of miR-21 and miR-222 were increased in cirrhosis and HCC but were decreased in FNH and the expression of miR-17-5p, miR-18a, miR-195 and miR-210 was decreased in FNH as compared with cirrhosis and/or HCC. In conclusion, the elevation of miR-34a and miR-224 may be associated with both benign and malignant proliferative processes, nevertheless the increased expression of oncomiRs miR-21 and miR-222 in cirrhosis and HCC but not in FNH may be related to malignant processes of the liver. The decreased levels of miR-18a, miR-195 and miR-210 may further differentiate FNH from cirrhosis, reflecting the different pathogenesis of these two entities contrary to some histologically similar features.
Collapse
|
12
|
Liu Z, Yang F, Zhao M, Ma L, Li H, Xie Y, Nai R, Che T, Su R, Zhang Y, Wang R, Wang Z, Li J. The intragenic mRNA-microRNA regulatory network during telogen-anagen hair follicle transition in the cashmere goat. Sci Rep 2018; 8:14227. [PMID: 30242252 PMCID: PMC6155037 DOI: 10.1038/s41598-018-31986-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
It is widely accepted that the periodic cycle of hair follicles is controlled by the biological clock, but the molecular regulatory mechanisms of the hair follicle cycle have not been thoroughly studied. The secondary hair follicle of the cashmere goat is characterized by seasonal periodic changes throughout life. In the hair follicle cycle, the initiation of hair follicles is of great significance for hair follicle regeneration. To provide a reference for hair follicle research, our study compared differences in mRNA expression and microRNA expression during the growth and repose stages of cashmere goat skin samples. Through microRNA and mRNA association analysis, we found microRNAs and target genes that play major regulatory roles in hair follicle initiation. We further constructed an mRNA-microRNA interaction network and found that hair follicle initiation and development were related to MiR-195 and the genes CHP1, SMAD2, FZD6 and SIAH1.
Collapse
Affiliation(s)
- Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
| | - Feng Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| | - Meng Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Lina Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yuchun Xie
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| | - Rile Nai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
| | - Tianyu Che
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China. .,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China.
| |
Collapse
|