1
|
Du J, Deng T, Cao B, Wang Z, Yang M, Han J. The application and trend of ultra-weak photon emission in biology and medicine. Front Chem 2023; 11:1140128. [PMID: 36874066 PMCID: PMC9981976 DOI: 10.3389/fchem.2023.1140128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Ultra-weak bioluminescence, also known as ultra-weak photon emission (UPE), is one of the functional characteristics of biological organisms, characterized by specialized, low-energy level luminescence. Researchers have extensively studied UPE for decades, and the mechanisms by which UPE is generated and its properties have been extensively investigated. However, there has been a gradual shift in research focus on UPE in recent years toward exploring its application value. To better understand the application and trend of UPE in biology and medicine, we have conducted a review of relevant articles in recent years. Among the several topics covered in this review is UPE research in biology and medicine (including traditional Chinese medicine), primarily focused on UPE as a promising non-invasive tool for diagnosis and oxidative metabolism monitoring as well as a potential tool for traditional Chinese medicine research.
Collapse
Affiliation(s)
- Jinxin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Cao B, Wang Z, Zhang J, Fu J, Zhang Z, Du J, Deng T, Pang J, Yang M, Han J. A biophoton method for identifying the quality states of fresh Chinese herbs. Front Pharmacol 2023; 14:1140117. [PMID: 37021045 PMCID: PMC10067714 DOI: 10.3389/fphar.2023.1140117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction: The quality of Chinese herbs is the basis for ensuring their safety and efficacy. However, the quality evaluation system is imperfect. In particular, there is a lack of quality evaluation methods for fresh Chinese herbs during growth. The biophoton is a common phenomenon and provides complete information about the interior of the living system, which is consistent with the holistic concept of traditional Chinese medicine. Therefore, we aim to correlate the biophoton characteristics with the quality states to find the biophoton parameters that can characterize the quality states of fresh Chinese herbs. Methods: The biophoton characteristics of motherwort and safflower were measured and characterized by the counts per second (CPS) in the steady state and the initial intensity (I0) and coherent time (T) of delayed luminescence. The active ingredient content was measured by ultra-high-performance liquid chromatography (UPLC). The pigment content of motherwort leaves was measured by UV spectrophotometry. The t-test and correlation analysis were performed on the experimental results. Results: The CPS and I0 of motherwort and I0 of safflower showed a significant downward trend during the growth process, and their active ingredient content showed a trend that increased and then decreased. The CPS, I0, and the content of active ingredients and pigments in a healthy state were significantly higher than those in a poor state, while T showed the opposite results. The CPS and I0 were all significantly and positively correlated with the content of active ingredients and pigments, while the T of motherwort showed the opposite results. Conclusion: It is feasible to identify the quality states of fresh Chinese herbs by using their biophoton characteristics. Both CPS and I0 have better correlations with the quality states and can be considered characteristic parameters of the quality of fresh Chinese herbs.
Collapse
Affiliation(s)
- Baorui Cao
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiying Wang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Jiayi Zhang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jialei Fu
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingxiang Pang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinxiang Han, ; Meina Yang,
| | - Jinxiang Han
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinxiang Han, ; Meina Yang,
| |
Collapse
|
3
|
Vaccaria n-Butanol Extract Lower the Production of Proinflammatory Cytokines and the Infection Risk of T. spiralis In Vivo. Acta Parasitol 2019; 64:520-527. [PMID: 31087260 DOI: 10.2478/s11686-019-00064-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Trichinellosis is a severe zoonosis involving the activation of inflammatory cells, accompanied by the prominent expressions of proinflammatory cytokines in the host. Semen vaccariae, the seeds of Vaccaria segetalis (Neck.) Garcke. ex Asch. (Caryophyllaceae), is a famous traditional herb that is rich in vaccaria n-butanol extract (VNE). Vaccarin is one major active component of VNE, and it is reported in the treatment of stranguria disease. Hypaphorine is another main active component of VNE and has good anti-inflammatory effect, whereas the potential bioactivity of VNE in trichinellosis treatment is still unknown. MATERIALS AND METHODS This study was designed to evaluate the potential anthelmintic and anti-inflammatory activity of VNE toward T. spiralis infection. ICR mice were used to assess the effect of VNE on repression larvae and adult worms in vivo. Immunohistochemistry analysis was performed to evaluate the expression levels of IL-1β, IL-6, TNF-α, and COX-2. RESULTS Our results showed that VNE could effectively depress the expressions of proinflammatory cytokines, including IL-1β, IL-6, TNF-α, and COX-2. The adult worms were decreased by 79.53%, while the muscle larvae were diminished by 77.70% as compared to the control. CONCLUSION These results demonstrated that VNE may be a promising therapeutic agent against the inflammation and diseases caused by T. spiralis infection.
Collapse
|
4
|
Spectrum of spontaneous photon emission as a promising biophysical indicator for breast cancer research. Sci Rep 2017; 7:13083. [PMID: 29026159 PMCID: PMC5638945 DOI: 10.1038/s41598-017-13516-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated the spectral characteristics of Spontaneous Photon Emission (SPE) from the body surface of a human breast cancer-bearing nude mice model during the overall growth process of breast cancers. By comparing and analyzing the data, we found that there was a striking difference between tumor mice and healthy controls in the spectral distribution of SPE from the body surface of lesion site, even when the morphological changes at the lesion site were not obvious. The spectral distribution of SPE from the healthy site of the tumor mice also differed from that of the healthy controls as the breast cancer developed to a certain stage. In addition, the difference in spectrum was related with different growth states of tumors. Interestingly, there was a positive correlation between the spectral ratio (610-630/395-455 nm) and the logarithm of the tumor volume for both the lesion site (R2 = 0.947; p < 0.001) and the normal site (R2 = 0.892; p < 0.001) of the tumor mice. The results suggested that the spectrum of SPE was sensitive to changes in the tumor status.
Collapse
|