1
|
Yin C, Mijiti X, Liu H, Wang Q, Cao B, Anwaierjiang A, Li M, Liu M, Jiang Y, Xu M, Wan K, Zhao X, Li G, Xiao H. Molecular Epidemiology of Clinical Mycobacterium tuberculosis Isolates from Southern Xinjiang, China Using Spoligotyping and 15-Locus MIRU-VNTR Typing. Infect Drug Resist 2023; 16:1313-1326. [PMID: 36919034 PMCID: PMC10008323 DOI: 10.2147/idr.s393192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Background In the last decades, the molecular epidemiological investigation of Mycobacterium tuberculosis has significantly increased our understanding of tuberculosis epidemiology. However, few such studies have been done in southern Xinjiang, China. We aimed to clarify the molecular epidemic characteristics and their association with drug resistance in the M. tuberculosis isolates circulating in this area. Methods A total of 347 isolates obtained from southern Xinjiang, China between Sep, 2017 and Sep, 2019 were included to characterize using a 15-locus MIRU-VNTR (VNTR-15China) typing and spoligotyping, and test for drug susceptibility profiles. Then the lineages and clustering of the isolates were analyzed, as well as their association with drug resistance. Results Spoligotyping results showed that 60 spoligotype international types (SITs) containing 35 predefined SITs and 25 Orphan or New patterns, and 12 definite genotypes were found, and the top three prevalent genotypes were Beijing genotype (207, 59.7%), followed by CAS1-Delhi (46, 13.6%), and Ural-2 (30, 8.6%). The prevalence of Beijing genotype infection in the younger age group (≤30) was more frequent than the two older groups (30~59 and ≥60 years old, both P values <0.05). The Beijing genotype showed significantly higher prevalence of resistance to isoniazid, rifampicin, ethambutol, multi-drug or at least one drug than the non-Beijing genotype (All P values ≤0.05). The estimated proportion of tuberculosis cases due to transmission was 18.4% according to the cluster rate acquired by VNTR-15China typing, and the Beijing genotype was the risk factor for the clustering (OR 9.15, 95% CI: 4.18-20.05). Conclusion Our data demonstrated that the Beijing genotype is the dominant lineage, associated with drug resistance, and was more likely to infect young people and contributed to tuberculosis transmission in southern Xinjiang, China. These findings will contribute to a better understanding of tuberculosis epidemiology in this area.
Collapse
Affiliation(s)
- Chunjie Yin
- School of Public Health, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xiaokaiti Mijiti
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Bin Cao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,School of Public Health, University of South China, Hengyang, People's Republic of China
| | | | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mengwen Liu
- School of Public Health, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Miao Xu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hui Xiao
- School of Public Health, Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
2
|
Lin S, Wei S, Zhao Y, Dai Z, Lin J, Pang Y. Genetic Diversity and Drug Susceptibility Profiles of Multidrug-Resistant Tuberculosis Strains in Southeast China. Infect Drug Resist 2021; 14:3979-3989. [PMID: 34611415 PMCID: PMC8487280 DOI: 10.2147/idr.s331516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Multidrug-resistant tuberculosis (MDR-TB) isolates collected from Fujian province, China were assessed for molecular epidemiological characteristics. Analysis of isolate genotype profiles revealed that the Beijing genotype was associated with especially high drug resistance and community transmission rates. Methods A total of 119 MDR-TB isolates obtained from TB patients in Fujian province were typed using 24–locus mycobacterium interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and spoligotyping. Drug susceptibility testing of all isolates was conducted using the L-J proportion method, with pyrazinamide (PZA) susceptibility testing conducted using the Mycobacterium Growth Indicator Tube System 960 (MGIT 960). Results We obtained 26 spoligotypes for the 119 isolates examined in this work. Spoligotyping results revealed that 80 (67.2%) isolates possessed the Beijing family genotypic profiles. Patients aged 25–44 years and ≥45 years were most likely to be infected by non-Beijing genotypes. The percentage of clustered cases with both PZA and ofloxacin (OFLX) resistance was significantly greater than the corresponding percentage for non-clustered cases. Of 44 PZA-resistant isolates, 28 isolates (63.6%) harbored pncA mutations, while pncA mutations were only detected in 7 (9.3%) PZA-susceptible isolates. Conclusion Our data demonstrate that the Beijing genotype is the dominant lineage among MDR-TB strains circulating in Fujian. Thus, MDR-TB infections occurring within this province are not likely associated with recent transmission events. PZA and fluoroquinolone resistance profiles were found to be associated with clustered isolates. Mutation of pncA is the main driver of MDR-TB PZA resistance and is associated with mutation sites scattered throughout the entire pncA protein-coding region.
Collapse
Affiliation(s)
- Shufang Lin
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People's Republic of China
| | - Shuzhen Wei
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People's Republic of China
| | - Yong Zhao
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People's Republic of China
| | - Zhisong Dai
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People's Republic of China
| | - Jian Lin
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People's Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| |
Collapse
|
3
|
Liu L, Zhao X, Wu X, Li S, Liu B, Rajaofera MJN, Zeng Y, Dong S, Bei Z, Pei H, Xia Q. Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosis in Hainan, China: from 2014 to 2019. BMC Microbiol 2021; 21:185. [PMID: 34147065 PMCID: PMC8214299 DOI: 10.1186/s12866-021-02246-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/02/2021] [Indexed: 11/14/2022] Open
Abstract
Background The emergence of antimicrobial resistance against Mycobacterium tuberculosis (M. tuberculosis) has become the major concern in global tuberculosis control due to its limited therapy options and high mortality. However, the clinical and molecular characteristics of drug-resistant strains vary in different geographical areas. Hainan Island located in southern China, is a high drug-resistant tuberculosis burden area. This study aimed to determine the dynamic changes of drug-resistance patterns and drug-related gene mutation types of M. tuberculosis in Hainan from 2014 to 2019. Results A total of 1484 culture-confirmed M. tuberculosis were included in this study. It was found that the proportions of drug resistance to isoniazid and rifampin were 31.3 and 31.1% respectively. Overall the proportion of multidrug resistant M. tuberculosis was 24.9%. Multivariate logistic regression analysis showed that age and the treatment history were independent influencing factors of drug resistant tuberculosis. The proportions of drug-resistant tuberculosis in retreatment patients were considerably higher than those in new patients. The most common mutation types of isoniazid were Ser315 → Thr (66.3%), and the most common mutation types of rifampin were Ser531 → Leu (41.5%). Conclusions Our data suggests that the prevalence of drug resistant TB remains high in Hainan, and the risks for developing drug resistance with diversified mutation types increased significantly in retreatment patients. These results contribute to the knowledge of the prevalence of drug resistance in Hainan Province and expand the molecular characteristics of drug resistance in China simultaneously.
Collapse
Affiliation(s)
- Lin Liu
- NHC Key Laboratory of Control of Tropical diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Xiujuan Zhao
- Public Health School, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Xingyong Wu
- NHC Key Laboratory of Control of Tropical diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Sijing Li
- NHC Key Laboratory of Control of Tropical diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Biao Liu
- NHC Key Laboratory of Control of Tropical diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Mamy Jayne Nelly Rajaofera
- NHC Key Laboratory of Control of Tropical diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Yingfei Zeng
- NHC Key Laboratory of Control of Tropical diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Sufang Dong
- NHC Key Laboratory of Control of Tropical diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Zheng Bei
- Hainan Province cadre sanatorium, Hainan Province Geriatric Hospital, Haikou, 571100, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Qianfeng Xia
- NHC Key Laboratory of Control of Tropical diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
4
|
Li Y, Pang Y, Zhang T, Xian X, Yang J, Wang R, Wang P, Zhang M, Chen W. Genotypes of Mycobacterium tuberculosis isolates circulating in Shaanxi Province, China. PLoS One 2020; 15:e0242971. [PMID: 33270700 PMCID: PMC7714122 DOI: 10.1371/journal.pone.0242971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
Objectives The prevalence of drug-resistant TB in Shaanxi Province is higher than other areas. This study was aimed to investigate the genetic diversity and epidemiology of Mycobacterium tuberculosis clinical strains in Shaanxi Province, China. Methods From January to December 2016, a total of 298 Mycobacterium tuberculosis clinical isolates from smear-positive pulmonary tuberculosis patients were genotyped by Mcspoligotyping and 15-locus VNTR. Results We found that the Beijing family strains was the most prominent family(81.54%, 243/298). Other family strains included T family(9.06%, 27/298), U family(0.67%, 2/298), LAM9 family(0.34%, 1/298) and Manu family(0.34%, 1/298). The rates of multidrug-resistant (MDR) M.Tuberculosis, age, type of case and education between Beijing and non-Beijing family strains were not statistically different, while the distribution in the three different regions among these was statistically significant. VNTR results showed that strains were classified into 280 genotypes, and 33 (11.07%) strains could be grouped into 14 clusters. 11 of the 15-VNTR loci were highly or moderately discriminative according to the Hunter-Gaston discriminatory index. Conclusions We concluded that the Beijing family genotype was the most prevalent genotype and 15-locus VNTR typing might be suitable for genotyping of M. tuberculosis in Shaanxi Province. There was less association between Beijing family genotypes and drug resistance in our study area.
Collapse
Affiliation(s)
- Yan Li
- Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- Clinical Laboratory, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi’an, China
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Tianhua Zhang
- Clinical Laboratory, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi’an, China
| | - Xiaoping Xian
- Clinical Laboratory, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi’an, China
| | - Jian Yang
- Clinical Laboratory, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi’an, China
| | - Rui Wang
- Clinical Laboratory, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi’an, China
| | - Panting Wang
- Clinical Laboratory, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi’an, China
| | - Meng Zhang
- Clinical Laboratory, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi’an, China
| | - Wei Chen
- Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- * E-mail:
| |
Collapse
|
5
|
Hou J, Pang Y, Yang X, Chen T, Yang H, Yang R, Chen L, Xu L. Outbreak of Mycobacterium tuberculosis Beijing Strain in a High School in Yunnan, China. Am J Trop Med Hyg 2020; 102:728-730. [PMID: 32100700 DOI: 10.4269/ajtmh.19-0533] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In this study, we report an investigation of a tuberculosis (TB) outbreak in a high school in China. Eleven students with active TB were identified. A culture-negative 17-year-old girl was considered as index case affected by pulmonary and meningeal TB. Screening results indicated latent TB in 32.8% of the students in the classroom of index case, whereas a significantly decreased prevalence of TB infection was found among students on the same floor, ranging from 1.3 to 8.2%. Genotyping revealed that all the Mycobacterium tuberculosis (MTB) isolates belonged to Beijing spoligotype international types 1 (SIT1). In conclusion, a diagnostic delay for the culture-negative index case played an important role in the transmission of Beijing genotype MTB strain in the boarding school in Yunnan. The separate locations of classrooms and sufficient air ventilation contributed to the significant difference in proportions of TB infection between classmates and other students in this outbreak.
Collapse
Affiliation(s)
- Jinglong Hou
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Yu Pang
- Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China
| | - Xing Yang
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Tao Chen
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Huijuan Yang
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Rui Yang
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Lianyong Chen
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Lin Xu
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
6
|
Chen J, Qiu Y, Yang R, Li L, Hou J, Lu K, Xu L. The characteristics of spatial-temporal distribution and cluster of tuberculosis in Yunnan Province, China, 2005-2018. BMC Public Health 2019; 19:1715. [PMID: 31864329 PMCID: PMC6925503 DOI: 10.1186/s12889-019-7993-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) makes a big challenge to public health, especially in high TB burden counties of China and Greater Mekong Subregion (GMS). The aim of this study was to identify the spatial-temporal dynamic process and high-risk region of notified pulmonary tuberculosis (PTB), sputum smear-positive tuberculosis (SSP-TB) and sputum smear-negative tuberculosis (SSN-TB) cases in Yunnan, the south-western of China between years of 2005 to 2018. Meanwhile, to evaluate the similarity of prevalence pattern for TB among GMS. METHODS Data for notified PTB were extracted from the China Information System for Disease Control and Prevention (CISDCP) correspond to population information in 129 counties of Yunnan between 2005 to 2018. Seasonally adjusted time series defined the trend cycle and seasonality of PTB prevalence. Kulldorff's space-time scan statistics was applied to identify temporal, spatial and spatial-temporal PTB prevalence clusters at county-level of Yunnan. Pearson correlation coefficient and hierarchical clustering were applied to define the similarity of TB prevalence among borders with GMS. RESULT There were a total of 381,855 notified PTB cases in Yunnan, and the average prevalence was 59.1 per 100,000 population between 2005 to 2018. A declined long-term trend with seasonality of a peak in spring and a trough in winter for PTB was observed. Spatial-temporal scan statistics detected the significant clusters of PTB prevalence, the most likely cluster concentrated in the northeastern angle of Yunnan between 2011 to 2015 (RR = 2.6, P < 0.01), though the most recent cluster for PTB and spatial cluster for SSP-TB was in borders with GMS. There were six potential TB prevalence patterns among GMS. CONCLUSION This study detected aggregated time interval and regions for PTB, SSP-TB, and SSN-TB at county-level of Yunnan province. Similarity prevalence pattern was found in borders and GMS. The localized prevention strategy should focus on cross-boundary transmission and SSN-TB control.
Collapse
Affiliation(s)
- Jinou Chen
- Division of tuberculosis control and prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan China
| | - Yubing Qiu
- Division of tuberculosis control and prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan China
| | - Rui Yang
- Division of tuberculosis control and prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan China
| | - Ling Li
- Division of tuberculosis control and prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan China
| | - Jinglong Hou
- Division of tuberculosis control and prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan China
| | - Kunyun Lu
- Division of tuberculosis control and prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan China
| | - Lin Xu
- Division of tuberculosis control and prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan China
| |
Collapse
|
7
|
Li D, Song Y, Yang P, Li X, Zhang AM, Xia X. Genetic diversity and drug resistance of Mycobacterium tuberculosis in Yunnan, China. J Clin Lab Anal 2019; 33:e22884. [PMID: 30896073 PMCID: PMC6595362 DOI: 10.1002/jcla.22884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/03/2022] Open
Abstract
Background China is a country with high burden of tuberculosis (TB), especially drug‐resistant TB (DR‐TB), which is still a serious health problem in Yunnan Province. Mycobacterium tuberculosis (MTB) is the pathogenic microorganism of TB. The epidemiological characteristics of MTB strains in local areas need to be described. Methods A total of 430 clinical MTB isolates were collected from Yunnan Province and genotyped through the method of 24‐locus mycobacterial interspersed repetitive unit‐variable number tandem DNA repeats (MIRU‐VNTR). Results The genotypes of the 24 loci showed abundantly genetic diversity, and allelic diversity index (h) of these loci varied from 0.012 to 0.817. Among the 430 strains, 30 clusters and 370 unique genotypes were identified. Beijing family was the predominant lineage (70.47%) in Yunnan MTB strains, and the other lineages contained T family (5.81%), MANU2 (0.70%), LAM (3.26%), CAS (0.23%), New‐1 (8.37%), and some unknown clades (11.16%). A total of 74 TB strains were identified as drug resistance through drug susceptibility testing (DST), including 38 multidrug‐resistant TB (MDR‐TB) and 36 single‐drug‐resistant TB (SDR‐TB). The frequency of MDR‐TB strains was significantly higher in Beijing family (10.89%) than that in non‐Beijing family (3.94%, P = 0.032). Conclusions Although MTB strains showed high genetic diversity in Yunnan, China, the Beijing family was still the dominant strain. A high frequency of MDR‐TB strains was recorded in the Beijing family.
Collapse
Affiliation(s)
- Daoqun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Pengpeng Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaofei Li
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - A-Mei Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Duan X, Yang L. Arthroscopic management for early-stage tuberculosis of the ankle. J Orthop Surg Res 2019; 14:25. [PMID: 30670051 PMCID: PMC6343251 DOI: 10.1186/s13018-018-1048-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/26/2018] [Indexed: 01/10/2023] Open
Abstract
Background Due to atypical clinical presentation, wide use of antibiotics, and lack of specificity in diagnosis, diagnosis of tubercular (TB) infection in joints is increasingly difficult, and misdiagnosis is common. The use of arthroscopy for the diagnosis and treatment of early-stage ankle TB has rarely been reported. This case series intended to present the clinical outcomes of arthroscopic management for early-stage ankle TB. Methods Fifteen patients with chronic synovitis of the ankle and suspicious cause of early-stage ankle TB underwent arthroscopic treatment from April 1, 2010, to March 31, 2016. These cases all failed to confirm diagnosis of TB by ankle arthrocentesis. They included seven males and eight females with an average age of 37.5 (8 to 70) in the study. Among them, five cases had history of pulmonary tuberculosis, and six had history of trauma. The procedure included synovial membrane biopsy and debridement. The diagnosis was confirmed by pathologic examination and culture. The treatment was combined with systemic anti-tuberculous drugs. Follow-up measurements included VAS score, AOFAS score, ESR, CRP, and MRI. Results After arthroscopic management, 13 cases confirmed TB by pathologic examination and culture, and two cases still remained clinically suspected TB; the rate of confirmed case was 87%. The incision healed well in all cases, and no serious complications were observed. There were significant differences in VAS scores, AOFAS scores, ESR, and CRP between before and after treatment (P < 0.01). Joint swelling disappeared or was relieved after 2 months in most patients. Ankle swelling and pain in one patient was improved after changing anti-tuberculous drugs. MRI suggested that all patients had effusion in the articular cavity, accompanied by bone edema of the distal tibia and talus before the treatment. After the surgery, the effusion was significantly reduced, and the signal of bone edema almost disappeared. No recurrent TB was found during the follow-ups. Conclusion Arthroscopic management for early-stage ankle TB is minimally invasive, safe, and reliable. It can easily obtain samples from specific area of TB for further confirmation of the diagnosis, while the debridement can also assist in local disease control. For cases of highly suspicious joint TB, arthroscopic biopsy and debridement after transient anti-TB treatment is recommended. Level of evidence Level IV, therapeutic case series Electronic supplementary material The online version of this article (10.1186/s13018-018-1048-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaojun Duan
- Centre for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400083, China.
| | - Liu Yang
- Centre for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400083, China
| |
Collapse
|
9
|
Huang L, Abe EM, Li XX, Bergquist R, Xu L, Xue JB, Ruan Y, Cao CL, Li SZ. Space-time clustering and associated risk factors of pulmonary tuberculosis in southwest China. Infect Dis Poverty 2018; 7:91. [PMID: 30115099 PMCID: PMC6097331 DOI: 10.1186/s40249-018-0470-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pulmonary tuberculosis (PTB,both smear positive and smear negative) is an airborne infectious disease of major public health concern in China and other parts of the world where PTB endemicity is reported. This study aims at identifying PTB spatio-temporal clusters and associated risk factors in Zhaotong prefecture-level city, located in southwest China, where the PTB notification rate was higher than the average rate in the entire country. METHODS Space-time scan statistics were carried out using PTB registered data in the nationwide TB online registration system from 2011 to 2015, to identify spatial clusters. PTB patients diagnosed between October 2015 and February 2016 were selected and a structured questionnaire was administered to collect a set of variables that includes socio-economic status, behavioural characteristics, local environmental and biological characteristics. Based on the discovery of detailed town-level spatio-temporal PTB clusters, we divided selected subjects into two groups including the cases that resides within and outside identified clusters. Then, logistic regression analysis was applied comparing the results of variables between the two groups. RESULTS A total of 1508 subjects consented and participated in the survey. Clusters for PTB cases were identified in 38 towns distributed over south-western Zhaotong. Logistic regression analysis showed that history of chronic bronchitis (OR = 3.683, 95% CI: 2.180-6.223), living in an urban area (OR = 5.876, 95% CI: 2.381-14.502) and using coal as the main fuel (OR = 9.356, 95% CI: 5.620-15.576) were independently associated with clustering. While, not smoking (OR = 0.340, 95% CI: 0.137-0.843) is the protection factor of spatial clustering. CONCLUSIONS We found PTB specially clustered in south-western Zhaotong. The strong associated factors influencing the PTB spatial cluster including: the history of chronic bronchitis, living in the urban area, smoking and the use of coal as the main fuel for cooking and heating. Therefore, efforts should be made to curtail these associated factors.
Collapse
Affiliation(s)
- Li Huang
- Yunnan provincial Center for Disease Control and Prevention, Kunming, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ruijing Er road 207, Shanghai, 200025 China
- National Research Center for Tropical Disease, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Eniola Michael Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ruijing Er road 207, Shanghai, 200025 China
- National Research Center for Tropical Disease, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Xin-Xu Li
- Center for Drug Evaluation, China Food and Drug Administration, Beijing, China
| | | | - Lin Xu
- Yunnan provincial Center for Disease Control and Prevention, Kunming, China
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ruijing Er road 207, Shanghai, 200025 China
- National Research Center for Tropical Disease, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yao Ruan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ruijing Er road 207, Shanghai, 200025 China
- National Research Center for Tropical Disease, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Chun-Li Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ruijing Er road 207, Shanghai, 200025 China
- National Research Center for Tropical Disease, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ruijing Er road 207, Shanghai, 200025 China
- National Research Center for Tropical Disease, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
| |
Collapse
|