Patel SJ, Yokoyama WM. CD8
+ T Cells Prevent Lethality from Neonatal Murine Roseolovirus Infection.
JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017;
199:3212-3221. [PMID:
28972091 PMCID:
PMC6280967 DOI:
10.4049/jimmunol.1700982]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
A recently described mouse homolog of the human roseoloviruses, murine roseolovirus (MRV), causes loss of peripheral and thymic CD4+ cells during neonatal infection of BALB/c mice. Despite significant disruptions to the normal adaptive immune response, infected BALB/c mice reproducibly recover from infection, consistent with prior studies on a related virus, mouse thymic virus. In this article, we show that, in contrast to published studies on mouse thymic virus, MRV appears to robustly infect neonatal C57BL/6 (B6) mice, causing severe depletion of thymocytes and peripheral T cells. Moreover, B6 mice recovered from infection. We investigated the mechanism of thymocyte and T cell loss, determining that the major thymocyte subsets were infected with MRV; however, CD4+ and CD4+CD8- T cells showed increased apoptosis during infection. We found that CD8+ T cells populated MRV-infected thymi. These CD8+ T cells expressed markers of activation, had restricted TCR repertoire, and accumulated intracellular effector proteins, consistent with a cytotoxic lymphocyte phenotype and suggesting their involvement in viral clearance. Indeed, absence of CD8+ T cells prevented recovery from MRV infection and led to lethality in infected animals, whereas B cell-deficient mice showed CD4+ T cell loss but recovered from infection without lethality. Thus, these results demonstrate that CD8+ T cells are required for protective immunity against a naturally occurring murine pathogen that infects the thymus and establish a novel infection model for MRV in B6 mice, providing the foundation for detailed future studies on MRV with the availability of innumerable mutant mice on the B6 background.
Collapse