1
|
Silva V, Ribeiro J, Teixeira P, Pinto P, Vieira-Pinto M, Poeta P, Caniça M, Igrejas G. Genetic Complexity of CC5 Staphylococcus aureus Isolates Associated with Sternal Bursitis in Chickens: Antimicrobial Resistance, Virulence, Plasmids, and Biofilm Formation. Pathogens 2024; 13:519. [PMID: 38921816 PMCID: PMC11206601 DOI: 10.3390/pathogens13060519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Sternal bursitis, a common inflammatory condition in poultry, poses significant challenges to both animal welfare and public health. This study aimed to investigate the prevalence, antimicrobial resistance, and genetic characteristics of Staphylococcus aureus isolates associated with sternal bursitis in chickens. Ninety-eight samples were collected from affected chickens, and 24 S. aureus isolates were identified. Antimicrobial susceptibility testing revealed resistance to multiple agents, with a notable prevalence of aminoglycoside resistance genes. Whole genome sequencing elucidated the genetic diversity and virulence profiles of the isolates, highlighting the predominance of clonal complex 5 (CC5) strains. Additionally, biofilm formation assays demonstrated moderate biofilm production capacity among the isolates. These findings underscore the importance of vigilant monitoring and targeted interventions to mitigate the impact of sternal bursitis in poultry production systems.
Collapse
Affiliation(s)
- Vanessa Silva
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jessica Ribeiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Pedro Teixeira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Pedro Pinto
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Thwala T, Madoroba E, Maliehe TS, Magwedere K, Basson AK, Butaye P. Antimicrobial Resistance, Enterotoxin and mec Gene Profiles of Staphylococcus aureus Associated with Beef-Based Protein Sources from KwaZulu-Natal Province, South Africa. Microorganisms 2022; 10:microorganisms10061211. [PMID: 35744729 PMCID: PMC9228960 DOI: 10.3390/microorganisms10061211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Annually, approximately 23,000 cases of food poisoning by Staphylococcus aureus enterotoxins are reported worldwide. The aim of this study was to determine the occurrence and characterize S. aureus on beef and beef products in South Africa. Organ meats (n = 169), raw processed meat (n = 110), raw intact (n = 53), and ready-to-eat meats (n = 68) were obtained from 25 retail outlets. S. aureus was isolated and enumerated according to the ISO 6888-1 method. Identification of the strains was performed by MALDI-TOF MS. The antimicrobial resistance was determined using the disc diffusion test. The presence of methicillin-resistance genes and the staphylococcal enterotoxin genes was determined by PCR. Prevalence was low (13/400; CI 1.7–5) and all but one positive sample were from organ meats. Eight isolates were resistant to at least one antibiotic. Two isolates carried the mecC gene. All the isolates tested positive for seg, seh, sei, and sep, whilst 53.8% were positive for sea. None of the isolates was positive for ser, sej, seb, sec, or sed. The prevalence of S. aureus was low, with organ meats being the most contaminated. The presence of mecC-positive MRSA and of enterotoxins warrants further investigation and risk assessment.
Collapse
Affiliation(s)
- Thembeka Thwala
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, Empangeni 3886, South Africa; (T.T.); (E.M.); (T.S.M.); (A.K.B.)
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, Empangeni 3886, South Africa; (T.T.); (E.M.); (T.S.M.); (A.K.B.)
| | - Tsolanku S. Maliehe
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, Empangeni 3886, South Africa; (T.T.); (E.M.); (T.S.M.); (A.K.B.)
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Albert K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, Empangeni 3886, South Africa; (T.T.); (E.M.); (T.S.M.); (A.K.B.)
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
- Correspondence:
| |
Collapse
|
3
|
Lawal OU, Ayobami O, Abouelfetouh A, Mourabit N, Kaba M, Egyir B, Abdulgader SM, Shittu AO. A 6-Year Update on the Diversity of Methicillin-Resistant Staphylococcus aureus Clones in Africa: A Systematic Review. Front Microbiol 2022; 13:860436. [PMID: 35591993 PMCID: PMC9113548 DOI: 10.3389/fmicb.2022.860436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital-associated (HA) and community-associated (CA) infections globally. The multi-drug resistant nature of this pathogen and its capacity to cause outbreaks in hospital and community settings highlight the need for effective interventions, including its surveillance for prevention and control. This study provides an update on the clonal distribution of MRSA in Africa. Methods A systematic review was conducted by screening for eligible English, French, and Arabic articles from November 2014 to December 2020, using six electronic databases (PubMed, EBSCOhost, Web of Science, Scopus, African Journals Online, and Google Scholar). Data were retrieved and analyzed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines (registered at PROSPERO: CRD42021277238). Genotyping data was based primarily on multilocus sequence types (STs) and Staphylococcal Cassette Chromosome mec (SCCmec) types. We utilized the Phyloviz algorithm in the cluster analysis and categorization of the MRSA STs into various clonal complexes (CCs). Results We identified 65 studies and 26 publications from 16 of 54 (30%) African countries that provided sufficient genotyping data. MRSA with diverse staphylococcal protein A (spa) and SCCmec types in CC5 and CC8 were reported across the continent. The ST5-IV [2B] and ST8-IV [2B] were dominant clones in Angola and the Democratic Republic of Congo (DRC), respectively. Also, ST88-IV [2B] was widely distributed across the continent, particularly in three Portuguese-speaking countries (Angola, Cape Verde, and São Tomé and Príncipe). The ST80-IV [2B] was described in Algeria and Egypt, while the HA-ST239/ST241-III [3A] was only identified in Egypt, Ghana, Kenya, and South Africa. ST152-MRSA was documented in the DRC, Kenya, Nigeria, and South Africa. Panton-Valentine leukocidin (PVL)-positive MRSA was observed in several CCs across the continent. The median prevalence of PVL-positive MRSA was 33% (ranged from 0 to 77%; n = 15). Conclusion We observed an increase in the distribution of ST1, ST22, and ST152, but a decline of ST239/241 in Africa. Data on MRSA clones in Africa is still limited. There is a need to strengthen genomic surveillance capacity based on a "One-Health" strategy to prevent and control MRSA in Africa.
Collapse
Affiliation(s)
- Opeyemi Uwangbaoje Lawal
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Olaniyi Ayobami
- Unit for Healthcare-Associated Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, AlAlamein International University, Alalamein, Egypt
| | - Nadira Mourabit
- Biotechnology, Environmental Technology and Valorisation of Bio-Resources Team, Department of Biology, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mamadou Kaba
- Division of Medical Microbiology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Shima M Abdulgader
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Adebayo Osagie Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria.,Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
4
|
de Mesquita Souza Saraiva M, Lim K, do Monte DFM, Givisiez PEN, Alves LBR, de Freitas Neto OC, Kariuki S, Júnior AB, de Oliveira CJB, Gebreyes WA. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Braz J Microbiol 2022; 53:465-486. [PMID: 34775576 PMCID: PMC8590523 DOI: 10.1007/s42770-021-00635-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) remains a major global public health crisis. The food animal industry will face escalating challenges to increase productivity while minimizing AMR, since the global demand for animal protein has been continuously increasing and food animals play a key role in the global food supply, particularly broiler chickens. As chicken products are sources of low-cost, high-quality protein, poultry production is an important economic driver for livelihood and survival in developed and developing regions. The globalization of the food supply, markedly in the poultry industry, is aligned to the globalization of the whole modern society, with an unprecedented exchange of goods and services, and transit of human populations among regions and countries. Considering the increasing threat posed by AMR, human civilization is faced with a complex, multifaceted problem compromising its future. Actions to mitigate antimicrobial resistance are needed in all sectors of the society at the human, animal, and environmental levels. This review discusses the problems associated with antimicrobial resistance in the globalized food chain, using the poultry sector as a model. We cover critical aspects of the emergence and dissemination of antimicrobial resistance in the poultry industry and their implications to public health in a global perspective. Finally, we provide current insights using the multidisciplinary One Health approach to mitigate AMR at the human-animal-environment interface.
Collapse
Affiliation(s)
- Mauro de Mesquita Souza Saraiva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Kelvin Lim
- Veterinary Health Management Branch, National Parks Board, 6 Perahu Road, Singapore, Singapore
| | - Daniel Farias Marinho do Monte
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Patrícia Emília Naves Givisiez
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Lucas Bocchini Rodrigues Alves
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | | | - Samuel Kariuki
- Kenya Medical Research Institute, Nairobi, Kenya
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Angelo Berchieri Júnior
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Wondwossen Abebe Gebreyes
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Abd El-Ghany WA. Staphylococcus aureus in poultry, with special emphasis on methicillin-resistant strain infection: A comprehensive review from one health perspective. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.257-267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive coccus normally present on the skin and internal organs of animals, birds, and humans. Under certain conditions, S. aureus could produce septicemia and affection of the skin, joints, and heart, as well as sepsis and death. The pathogenicity of S. aureus is associated with the presence of some virulent surface proteins and the production of some virulent toxins and enzymes. This pathogen is considered one of the most important and worldwide foodborne causes as it is incriminated in most cases of food poisoning. The hazardous use of antibiotics in the veterinary field leads to the development of multidrug-resistant S. aureus strains that can be transmitted to humans. The incidence of methicillin-resistant S. aureus (MRSA) strains has increased globally. These resistant strains have been detected in live animals, poultry, and humans. In addition, retail animal products, especially those of avian origin, are considered the main source of MRSA strains that can be easily transmitted to humans. MRSA infection is regarded as nosocomial or occupational. Humans get infected with MRSA strains through improper handling or preparation of contaminated animals or poultry carcasses or improper cooking with contaminated meat. Live birds also can transmit MRSA to close-contact workers in poultry farms. Transmission of MRSA infection in hospitals is from an infected individual to a healthy one. Prevention and control of MRSA are based on the application of hygienic measures in farms as well as proper processing, handling, and cooking of retail poultry products. The cooperation between veterinary and human practitioners is a must to avoid the possibility of zoonotic transmission. Accordingly, this review focused on the sources and transmission of MRSA infection, virulence and resistance factors, incidence and prevalence in poultry and different products, antibiotic resistance, and prevention and control strategies.
Collapse
Affiliation(s)
- Wafaa A. Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
6
|
Thwala T, Madoroba E, Basson A, Butaye P. Prevalence and Characteristics of Staphylococcus aureus Associated with Meat and Meat Products in African Countries: A Review. Antibiotics (Basel) 2021; 10:antibiotics10091108. [PMID: 34572690 PMCID: PMC8465003 DOI: 10.3390/antibiotics10091108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance has been increasing globally, which negatively affects food safety, veterinary, and human medicine. Ineffective antibiotics may cause treatment failure, which results in prolonged hospitalisation, increased mortality, and consequently, increased health care costs. Staphylococcus aureus causes a diverse range of infections including septicaemia and endocarditis. However, in food, it mainly causes food poisoning by the production of enterotoxins. With the discovery of methicillin-resistant S. aureus strains that have a separate reservoir in livestock animals, which were termed as livestock-associated methicillin-resistant S. aureus (LA-MRSA) in 2005, it became clear that animals may pose another health risk. Though LA-MRSA is mainly transferred by direct contact, food transmission cannot be excluded. While the current strains are not very pathogenic, mitigation is advisable, as they may acquire new virulence genes, becoming more pathogenic, and may transfer their resistance genes. Control of LA-MRSA poses significant problems, and only Norway has an active mitigation strategy. There is limited information about LA-MRSA, MRSA in general, and other S. aureus infections from African countries. In this review, we discuss the prevalence and characteristics of antimicrobial susceptible and resistant S. aureus (with a focus on MRSA) from meat and meat products in African countries and compare it to the situation in the rest of the world.
Collapse
Affiliation(s)
- Thembeka Thwala
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa; (T.T.); (E.M.); (A.B.)
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa; (T.T.); (E.M.); (A.B.)
| | - Albert Basson
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa; (T.T.); (E.M.); (A.B.)
| | - Patrick Butaye
- Department of Biosciences, Ross University School of Veterinary Medicine, West Farm, Saint Kitts and Nevis
- Bacteriology and Avian Diseases, Department of Pathology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- Correspondence:
| |
Collapse
|
7
|
Makumi A, Mhone AL, Odaba J, Guantai L, Svitek N. Phages for Africa: The Potential Benefit and Challenges of Phage Therapy for the Livestock Sector in Sub-Saharan Africa. Antibiotics (Basel) 2021; 10:antibiotics10091085. [PMID: 34572667 PMCID: PMC8470919 DOI: 10.3390/antibiotics10091085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
One of the world’s fastest-growing human populations is in Sub-Saharan Africa (SSA), accounting for more than 950 million people, which is approximately 13% of the global population. Livestock farming is vital to SSA as a source of food supply, employment, and income. With this population increase, meeting this demand and the choice for a greater income and dietary options come at a cost and lead to the spread of zoonotic diseases to humans. To control these diseases, farmers have opted to rely heavily on antibiotics more often to prevent disease than for treatment. The constant use of antibiotics causes a selective pressure to build resistant bacteria resulting in the emergence and spread of multi-drug resistant (MDR) organisms in the environment. This necessitates the use of alternatives such as bacteriophages in curbing zoonotic pathogens. This review covers the underlying problems of antibiotic use and resistance associated with livestock farming in SSA, bacteriophages as a suitable alternative, what attributes contribute to making bacteriophages potentially valuable for SSA and recent research on bacteriophages in Africa. Furthermore, other topics discussed include the creation of phage biobanks and the challenges facing this kind of advancement, and the regulatory aspects of phage development in SSA with a focus on Kenya.
Collapse
|
8
|
Ahmed HA, Awad NFS, Abd El-Hamid MI, Shaker A, Mohamed RE, Elsohaby I. Pet birds as potential reservoirs of virulent and antibiotic resistant zoonotic bacteria. Comp Immunol Microbiol Infect Dis 2020; 75:101606. [PMID: 33373939 DOI: 10.1016/j.cimid.2020.101606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Abstract
Bacterial pathogens carried by pet birds are considered a risk for birds, workers, and pet owners. This study investigated the potential of pet birds as reservoirs for virulent multidrug-resistant (MDR) zoonotic bacteria and assessed the genetic relatedness and diversity of bacterial isolates from pet birds and human contacts. Cloacal and tracheal swabs from 125 pet birds and 70 hand swabs from human contacts were collected. The results revealed that the pet birds were reservoirs for Escherichia coli, Klebsiella pneumoniae (17.6 %, each), and Staphylococcus aureus (15.2 %). These isolates were also identified in their human contacts, at percentages of 14.3 %, 12.9 %, and 24.3 %, respectively. Virulence associated genes were identified from E. coli (stx2, stx2f, eaeA, and hlyA), K. pneumoniae (fimH, TraT, and magA), and S. aureus (PVL, hly, sea, sed genes) isolates. Multidrug-resistant E. coli, K. pneumoniae, and S. aureus were highly prevalent (81.3 %, 90.3 %, and 61.1 %, respectively). The genetic relationship between the E. coli and K. pneumoniae isolates from the pet birds and human contacts were determined by ERIC-PCR, while, RAPD-PCR was used for the S. aureus isolates. ERIC-PCR was found to have the highest discriminatory power. The clustering of the isolates from the pet birds and human contacts indicated potential transmission between the birds and workers. In conclusion, pet birds could act as potential reservoirs for zoonotic bacterial pathogens; thus, posing a risk to their human contacts.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Sharkia Governorate, Egypt.
| | - Naglaa F S Awad
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Sharkia Governorate, Egypt
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt
| | - Asmaa Shaker
- Veterinary Hospital, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Rehab E Mohamed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Sharkia Governorate, Egypt
| | - Ibrahim Elsohaby
- Department of Animal Medicine, Division of Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Sharkia Governorate, Egypt; Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| |
Collapse
|
9
|
Ogundipe FO, Ojo OE, Feßler AT, Hanke D, Awoyomi OJ, Ojo DA, Akintokun AK, Schwarz S, Maurischat S. Antimicrobial Resistance and Virulence of Methicillin-Resistant Staphylococcus aureus from Human, Chicken and Environmental Samples within Live Bird Markets in Three Nigerian Cities. Antibiotics (Basel) 2020; 9:antibiotics9090588. [PMID: 32911712 PMCID: PMC7558163 DOI: 10.3390/antibiotics9090588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a major threat to public health. This study investigated the occurrence of MRSA in humans, chickens, chicken meat and environmental samples within poultry farms and live bird markets in southwestern Nigeria. Methods: MRSA were isolated using selective culture and tested for antimicrobial susceptibility by broth microdilution. Selected isolates were characterized by whole genome sequencing (WGS). From WGS data, spa, dru, multilocus sequence typing (MLST) and SCCmec types, but also virulence and antimicrobial resistance genes, were identified. Results: Fifty-six MRSA isolates were detected in 734 samples. They showed resistance to β-lactams (100%), tetracycline (60.7%), ciprofloxacin (33.9%), erythromycin (28.6%), gentamicin (32.1%), and trimethoprim/sulfamethoxazole (10.7%). All 30 isolates investigated by WGS carried mecA, dfrG, and tet(38) genes. Other resistance genes detected were blaZ (83.3%), fosB (73.3%), tet(K) (60.0%), aacA-aphD (36.6%), aphA3 (33.3%), msr(A) (30.0%), mph(C) (30.0%), dfrS1 (3.3%), and sat4 (3.3%). Seven spa types (t091, t314, t657, t1476, t2331, t4690 and t12236), four known (dt9aw, dt10ao, dt10cj, and dt11a) and two novel (dt10dr and dt11dw) dru types, as well as five sequence types (ST8, ST121, ST152, ST772 and ST789) were found among the MRSA isolates. All ST121 isolates carried an SCCmec type IV cassette and were not dru-typeable. ST152 and ST121 were found only in specific sample categories within defined locations, while ST8 and ST772 were distributed across most sample categories and locations. Three SCCmec types, IVa, V and Vc, were identified. All MRSA isolates possessed virulence genes including aur, clpP, coa, fnbA, esaA, hly, hla, ica, isdA, srtB, sspA, and vWbp, among others. The toxic shock syndrome toxin gene (tst) was not detected in any isolate, whereas the Pantone-Valentine leukocidin genes lukF-PV/lukS-PV were present in all ST121, all ST772, and all but one ST152 isolates. Conclusion: The results of this study (i) showed that chicken meat is contaminated by MRSA and (ii) suggested that live bird markets may serve as focal points for the dissemination of MRSA within the community.
Collapse
Affiliation(s)
- Flora Olubunmi Ogundipe
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta 110124, Nigeria; (F.O.O.); (D.A.O.); (A.K.A.)
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (D.H.)
| | - Olufemi Ernest Ojo
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (D.H.)
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Nigeria;
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (D.H.)
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (D.H.)
| | - Olajoju Jokotola Awoyomi
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Nigeria;
| | - David Ajiboye Ojo
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta 110124, Nigeria; (F.O.O.); (D.A.O.); (A.K.A.)
| | - Aderonke Kofoworola Akintokun
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta 110124, Nigeria; (F.O.O.); (D.A.O.); (A.K.A.)
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (D.H.)
- Correspondence:
| | - Sven Maurischat
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| |
Collapse
|
10
|
Dressed chicken as potential vehicle for spread of methicillin-resistant Staphylococcus aureus in Sokoto, Nigeria. Future Sci OA 2020; 6:FSO619. [PMID: 33312697 PMCID: PMC7720375 DOI: 10.2144/fsoa-2020-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim To evaluate the role of dressed chicken in the spread of methicillin-resistant Staphylococcus aureus (MRSA) in Sokoto, Nigeria. Materials & methods 190 chicken carcass rinsates were subjected to culture and biochemical analyses to isolate and identify MRSA. PCR was used to amplify mecA gene that is responsible for methicillin resistance. Results & conclusion Culture and molecular analysis showed 19.5% (37/190) of the rinse had MRSA on oxacillin-resistance screening agar base (ORSAB) with 7.9% (15/190) possessing the mecA gene. Significant association (p = 0.044) exist between local-chicken and presence of MRSA, being twice more likely to have MRSA compared to exotic-chickens (odds ratio [OR] = 2.132). Results indicate possible role of dressed-chicken in the spread of MRSA. Authorities should regulate the sale and use of antibiotics by farmers, and enhance hygienic practices at slaughterhouses.
Collapse
|
11
|
Okorie-Kanu OJ, Anyanwu MU, Ezenduka EV, Mgbeahuruike AC, Thapaliya D, Gerbig G, Ugwuijem EE, Okorie-Kanu CO, Agbowo P, Olorunleke S, Nwanta JA, Chah KF, Smith TC. Molecular epidemiology, genetic diversity and antimicrobial resistance of Staphylococcus aureus isolated from chicken and pig carcasses, and carcass handlers. PLoS One 2020; 15:e0232913. [PMID: 32407414 PMCID: PMC7224487 DOI: 10.1371/journal.pone.0232913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
The epidemiology of Staphylococcus aureus in food animals, associated products, and their zoonotic potential in Nigeria are poorly understood. This study aimed to provide data on the prevalence, genetic characteristics and antimicrobial resistance of S. aureus isolated from chicken and pig carcasses, and persons in contact with the carcasses at slaughterhouses in Nigeria. Surface swabs were collected randomly from 600 chicken and 600 pig carcasses. Nasal swabs were collected from 45 workers in chicken slaughterhouses and 45 pig slaughterhouse workers. S. aureus isolates were analyzed by spa typing. They were also examined for presence of the Panton-Valentine Leucocidin (PVL) and mecA genes, as well as for antimicrobial resistance phenotype. Overall, 53 S. aureus isolates were recovered (28 from chicken carcasses, 17 from pig carcasses, 5 from chicken carcass handlers and 3 from pig carcass handlers). Among the isolates, 19 (35.8%) were PVL-positive and 12 (22.6%) carried the mecA gene. The 53 isolates belonged to 19 spa types. The Based Upon Repeat Pattern (BURP) algorithm separated the isolates into 2 spa-clonal complexes (spa-CC) and 9 singletons including 2 novel spa types (t18345 and t18346). The clonal complexes (CC) detected were CC1, CC5, CC8, CC15, CC88 and CC152. CC15-related isolates represented by spa type t084 (32.1%) and CC5 represented by spa type t311 (35.3%) predominated among isolates from chicken carcasses/ handlers, and pig carcasses/ handlers, respectively. Multidrug resistance exhibited by all the CC except CC8, was observed among isolates from chicken carcasses (64.3%), pig carcasses (41.2%), handlers of chicken meat (40.0%) and handlers of pork (33.3%). All the CC showed varying degrees of resistance to tetracycline while CC15 and CC5 exhibited the highest resistance to sulphamethoxazole/trimethoprim and erythromycin, respectively. The predominant antimicrobial resistance pattern observed was penicillin-tetracycline-sulphamethoxazole/trimethoprim (PEN-TET-SXT). In conclusion, food animals processed in Enugu State in Southeast Nigeria are potential vehicles for transmission of PVL-positive multiple-drug resistant S. aureus and methicillin-resistant S. aureus from farm to slaughterhouse and potentially to the human population. Public health intervention programs at pre- and post-slaughter stages should be considered in Nigerian slaughterhouses.
Collapse
Affiliation(s)
- Onyinye J. Okorie-Kanu
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
- * E-mail:
| | - Madubuike U. Anyanwu
- Microbiology Unit, Department of Veterinary Microbiology and Pathology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ekene V. Ezenduka
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony C. Mgbeahuruike
- Microbiology Unit, Department of Veterinary Microbiology and Pathology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Dipendra Thapaliya
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, Kent State University, Kent, Ohio, United States of America
| | - Gracen Gerbig
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, Kent State University, Kent, Ohio, United States of America
| | - Ejike E. Ugwuijem
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Christian O. Okorie-Kanu
- Department of Veterinary Pathology, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Philip Agbowo
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Solomon Olorunleke
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - John A. Nwanta
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Kennedy F. Chah
- Microbiology Unit, Department of Veterinary Microbiology and Pathology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tara C. Smith
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
12
|
Mama OM, Dieng M, Hanne B, Ruiz-Ripa L, Diop CGM, Torres C. Genetic characterisation of staphylococci of food-producing animals in Senegal. PVL detection among MSSA. BMC Vet Res 2019; 15:391. [PMID: 31684939 PMCID: PMC6829939 DOI: 10.1186/s12917-019-2137-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Background Food-producing animals can be a vehicle for staphylococcal species as well as their virulence and antimicrobial resistance genes. This work aimed to analyse the diversity of staphylococcal species in food-producing animals in Dakar/Senegal, and to determine the antimicrobial resistance phenotype/genotype and virulence factors of recovered isolates. Nasal samples of 149 cows and 199 chickens (348 animals) were collected from one slaughterhouse and a local market respectively, and were inoculated on selective media for staphylococci recovery. For S. aureus isolates, molecular typing (spa-type, MLST) was performed by PCR/sequencing, and the presence of 27 virulence genes (exfoliative and toxic shock toxins, PVL, haemolysins and enterotoxins) as well as the gene scn were analysed by PCR. Susceptibility to twelve antibiotics was studied by disc-diffusion method for all staphylococci; the resistance genes involved were screened by PCR. Results Staphylococcus spp. was present in 3 and 26.8% of chicken and cow nasal samples, respectively. Seven S. aureus isolates and forty isolates of other staphylococcal species were identified. S. aureus isolates were recovered from cow (n = 6) and chicken (n = 1) samples, belonging to four genetic lineages: t084/ST15 (n = 1); t10579/ST291 (n = 3); t355, t4690/ST152 (n = 2); and t6618/ST6 (n = 1). All S. aureus were methicillin-susceptible, penicillin-resistant (blaZ), and two of them were also tetracycline-resistant [tet(K)]. All the isolates carried at least one of the virulence genes tested. The PVL genes were detected in three ST15 and ST152 isolates. They all harboured haemolysins encoding genes and lacked the scn gene. The other staphylococci recovered were S. sciuri (n = 16), S. simulans (n = 11), S. hyicus (n = 5), S. haemolyticus (n = 4), S. chromogenes (n = 3), and S. hominis (n = 1); they were all methicillin-susceptible and 27.5% tetracycline-resistant [tet(K) and tet(L)]. Conclusions A low prevalence of S. aureus was detected among food-producing animals, all susceptible to methicillin. However, the presence of virulence genes (lukF/lukS-PV, eta, tst, sea and see) is worrisome to the extent that they could be transferred to derived food and therefore, to humans.
Collapse
Affiliation(s)
- Olouwafemi Mistourath Mama
- Departamento Agricultura y Alimentación, Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | - Modou Dieng
- LAE/ Ecole Supérieure polytechnique de Dakar, UCAD, Dakar, Sénégal
| | - Bocar Hanne
- Service Vétérinaire, Société de gestion des abattoirs du Sénégal, Dakar, Sénégal
| | - Laura Ruiz-Ripa
- Departamento Agricultura y Alimentación, Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | | | - Carmen Torres
- Departamento Agricultura y Alimentación, Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain.
| |
Collapse
|
13
|
Rapid Health Impact Assessment of a Proposed Poultry Processing Plant in Millsboro, Delaware. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183429. [PMID: 31527428 PMCID: PMC6765835 DOI: 10.3390/ijerph16183429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023]
Abstract
In 2013, Allen Harim Foods purchased the former site of a Vlasic Pickle plant in Millsboro, Delaware, and proposed to convert the site into a poultry processing plant that would process approximately two million birds weekly. This generated concerns about the proposed plant’s potential to impact health and quality of life among residents. We conducted a rapid health impact assessment (HIA) of the proposed plant to assess baseline environmental health issues in the host community and projected impacts. The scoping and baseline assessment revealed social, economic, and health disparities in the region. We also determined that residents in the area were already underserved and overburdened with pollution from multiple environmental hazards near the proposed plant including two sites contaminated with hazardous wastes, a power plant, and another poultry processing plant. The projected size and amount of poultry to be processed at the plant would likely cause increased levels of air, soil and water pollution, additional odor issues, and increased traffic and related pollution and safety issues. The information generated from the HIA formed the basis of a campaign to raise awareness about potential problems associated with the new facility and to foster more engagement of impacted residents in local decision-making about the proposed plant. In the end, the HIA helped concerned residents oppose the new poultry processing plant. This case study provides an example of how HIAs can be used as a tool to educate residents, raise awareness about environmental justice issues, and enhance meaningful engagement in local environmental decision-making processes.
Collapse
|
14
|
Phylogenetic and Molecular Profile of Staphylococcus aureus Isolated from Bloodstream Infections in Northeast Brazil. Microorganisms 2019; 7:microorganisms7070210. [PMID: 31336623 PMCID: PMC6680844 DOI: 10.3390/microorganisms7070210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections, such as pneumonia, meningitis, endocarditis, toxic shock syndrome, and sepsis, among others. The objective of this study was to investigate the molecular profile, antimicrobial resistance, and clonal diversity of S. aureus isolated from the bloodstream. The determination of the minimum inhibitory concentration (MIC) of the antimicrobial was performed by an automated method. The presence of several virulence and resistance genes was evaluated by PCR. In addition, multilocus sequence typing (MLST) was used to analyze the clonal diversity of S. aureus. A high resistance to oxacillin (78%), clindamycin (78%), erythromycin (70%), ciprofloxacin (61%), and gentamicin (52%) was observed among the isolates. In most of them, the following virulence genes were detected: hlb (83%), ebpS (61%), icaA (57%), fnbpA (17%), and clfA (13%). Only one isolate carried the pvl gene. MLST analysis identified five new sequence types (STs): 5429, 5430, 5431, 5432, and 5433, as well as another seven-ST5, ST97, ST398, ST101, ST30, ST461, and ST2779-among the remaining strains. These seven STs and the four new STs are clustered in four clonal complexes: CC1, CC2, CC7, and CC17. Phylogenetic analysis showed the genetic relationship of the five new ST strains with another 18 strains. Altogether, these analyses indicate the horizontal transfer acquisition of virulence factor genes and multidrug resistance.
Collapse
|
15
|
Li Q, Li Y, Tang Y, Meng C, Ingmer H, Jiao X. Prevalence and characterization of Staphylococcus aureus and Staphylococcus argenteus in chicken from retail markets in China. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Otalu OJ, Kwaga JKP, Okolocha EC, Islam MZ, Moodley A. High Genetic Similarity of MRSA ST88 Isolated From Pigs and Humans in Kogi State, Nigeria. Front Microbiol 2018; 9:3098. [PMID: 30619177 PMCID: PMC6305073 DOI: 10.3389/fmicb.2018.03098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
We determined the prevalence and genetic characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolated from pigs and humans between September 2013 and February 2015 in Kogi State, a central region in Nigeria. A total of 680 nasal swabs were collected and analyzed from pigs (n = 425) and “pig-contact” humans (n = 55) on 35 farms, and “non-pig-contact” humans (n = 200). MRSA was recovered from 20 (4.7%) pigs on 12 farms and 18 (7.0%) humans. Six (2.4%) of the human isolates were recovered from “pig-contact” humans, of which only three work on farms also harboring MRSA positive pigs. All 38 MRSA were resistant to β-lactams only, belonged to spa type t1603, sequence type (ST) 88, and mecA was associated with a SCCmec IVa element. Four isolates from a pig, a pig-contact human from the same farm, a pig-contact human from a pig farm in a different district, and a non-pig-contact human were subjected to whole genome sequencing (WGS). Core genome SNP analysis revealed high genetic similarity between strains (3–11 SNP differences), despite the temporal (2 year gap) and geographic (165 km) differences between isolates. Furthermore, these Nigerian isolates form a distinct clade when compared to other African MRSA ST88 isolates. All but one porcine strain was positive for scn suggesting a possible human origin and that pigs were either transiently contaminated by humans or result of a very recent human-to-pig transmission event. To our knowledge, this is the first report of genetically confirmed MRSA in pigs in Nigeria, which appear to be a typical CA-MRSA clone present in the human population.
Collapse
Affiliation(s)
- Otalu Jnr Otalu
- Department of Microbiology, Faculty of Natural Sciences, Kogi State University, Anyigba, Nigeria
| | - Jacob K P Kwaga
- Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Emmanuel Chukuwdi Okolocha
- Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Md Zohorul Islam
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arshnee Moodley
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Ayeni FA, Ruppitsch W, Allerberger F. Molecular characterization of clonal lineage and staphylococcal toxin genes from S. aureus in Southern Nigeria. PeerJ 2018; 6:e5204. [PMID: 30013850 PMCID: PMC6042479 DOI: 10.7717/peerj.5204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background Staphylococcus aureus is a human colonizer with high potential for virulence, and the spread of the virulent strains from the colonized hosts to non-carriers in the community is on the increase. However, there are few reports on comprehensive analysis of staphylococcal enterotoxin (SE) genes with clonal lineage in S. aureus in Africa. This is essential because of diversity of cultures and habits of the people. This study analyzed spa types and enterotoxin genes in S. aureus strains previously isolated from the human nostrils, poultry and clinical samples in Southern Nigeria. Methods Forty-seven S. aureus isolates were obtained from humans nostrils (n = 13), clinical strains (n = 21) and poultry (n = 13) from previous studies in Southern Nigeria. The strains were analyzed for mecA gene, selected toxins genes (sea, seb, sec, sed, see, seg, seh, sei, sej, sek, sel, sem, sen, seo, sep, seq, ser, seu) and Panton-Valentine leukocidin (PVL) gene (lukS-PV/lukF-PV) by PCR. Population structures of the strains were detected by Staphylococcal protein A (spa) typing. Results Twenty different spa types were obtained with the highest percentages, 17% observed in spa type t091 from clinical, nasal and poultry samples while t069 was the most prevalent spa type in poultry. Two MRSA were only detected in human strains. The poultry strains had the highest occurrence of SE genes (18%) followed by nasal strains (15%) and clinical strains (10%). Eighty-nine percent of all tested isolates harbored at least one SE gene; seo was the most prevalent (34%) followed by seg (30%) and sea (21%), while sec, see and sej were absent in all strains. Spa type t355 was associated with lukS-PV/lukF-PV gene and complete absence of all studied SE. Sea, seq, seb, sek were associated with spa type t069; sea was associated with t127 while sep was associated with spa type t091. There were coexistences of seo/seg and sei/seg. Conclusions The higher carriage of staphylococci enterotoxin genes by the nasal and poultry S. aureus strains suggests a high potential of spread of staphylococcal food poisoning through poultry and healthy carriers in the community. This is the first report of high occurrence of staphylococcal enterotoxins genes in poultry from Nigeria.
Collapse
Affiliation(s)
- Funmilola A Ayeni
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Werner Ruppitsch
- Division of Human Medicine, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Franz Allerberger
- Division of Human Medicine, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|