1
|
Sun Z, Deng L, Xu Z, Yang K, Yu P. Uncovering the molecular mechanism of Mume Fructus in treatment of Sjögren's syndrome. Medicine (Baltimore) 2024; 103:e38085. [PMID: 38728503 PMCID: PMC11081559 DOI: 10.1097/md.0000000000038085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Modern medicine has no cure for the xerostomia caused by the early onset of Sjögren's syndrome. Mume Fructus is a common Chinese herbal medicine used to relieve xerostomia. However, the molecular mechanisms of the effects of Mume Fructus are unknown. In this study, network pharmacology and molecular docking were used to investigate the mechanisms of action of Mume Fructus on Sjögren's syndrome. MATERIALS AND METHOD The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used to identify the active components and targets of Mume Fructus, and the UniProt database was used to identify the genes encoding these targets. SS-related targets were also identified from the GeneCards and OMIM databases. By finding the intersection of the targets of the compounds and the targets of Sjögren's syndrome, the predicted targets of Mume Fructus in the treatment of Sjögren's syndrome were obtained. Further investigation of the active compounds and their targets was carried out by constructing a network of "medicine-candidate compound-target-disease" using Cytoscape 3.7.2, the Protein-Protein Interaction network using the STRING database and Cytoscape 3.7.2, and key targets were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on R software. Finally, molecular docking was used to verify the affinity of the candidate compounds to the key targets. RESULTS Quercetin, beta-sitosterol, and kaempferol in Mume Fructus interact with AKT1, IL-6, IL-1B, JUN, CASP3, and MAPK8. These results suggest that Mume Fructus exerts its therapeutic effects on the peripheral gland injury of Sjögren's syndrome and its secondary cardiovascular disease and tumorigenesis through anti-inflammatory, anti-oxidant, and anti-tumor pathways. CONCLUSION With network pharmacology, this study systematically identified the main active components, targets, and specific mechanisms of the therapeutic effects of Mume Fructus on Sjögren's syndrome, providing both a theoretical basis and research direction for further investigations on Mume Fructus.
Collapse
Affiliation(s)
- Zhongli Sun
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| | - Lilin Deng
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| | - Zhoujie Xu
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| | - Kun Yang
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| | - Penglong Yu
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| |
Collapse
|
2
|
Yin L, Qi Y, Jiang Y. Pharmacological Mechanism of Mume Fructus in the Treatment of Triple-Negative Breast Cancer Based on Network Pharmacology. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04948-w. [PMID: 38668843 DOI: 10.1007/s12010-024-04948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Our study aims to find the relevant mechanism of Mume Fructus in the treatment of triple-negative breast cancer (TNBC) by network pharmacology analysis and experimental validation. The effective compounds of Mume Fructus and TNBC-related target genes were imported into Cytoscape to construct a Mume Fructus-effective compounds-disease target network. The common targets of Mume Fructus and TNBC were determined by drawing Venn diagrams. Then, the intersection targets were transferred to the STRING database to construct a protein-protein interaction (PPI) network. To investigate the mechanism of Mume Fructus in treatment of TNBC, breast cancer cell (MDA-MB-231) was treated with Mume Fructus and/or transfected with small interference RNA-PKM2(siPKM2). CCK-8 assay, cell clonal formation assay, transwell, flow cytometry, qRT-PCR, and western blotting were performed. Eight effective compounds and 145 target genes were obtained, and the Mume Fructus- effective compounds-disease target network was constructed. Then through the analysis of the PPI network, we obtained 10 hub genes including JUN, MAPK1, RELA, AKT1, FOS, ESR1, IL6, MAPK8, RXRA, and MYC. KEGG enrichment analysis showed that JUN, MAPK1, RELA, FOS, ESR1, IL6, MAPK8, and RXRA were enriched in the Th17 cell differentiation signaling pathway. Loss of PKM2 and Mume Fructus both inhibited the malignant phenotype of MDA-MB-231 cells. And siPKM2 further aggravated the Mume Fructus inhibition of malignancy of breast cancer cells. Network pharmacology analysis suggests that Mume Fructus has multiple therapeutic targets for TNBC and may play a therapeutic role by modulating the immune microenvironment of breast cancer.
Collapse
Affiliation(s)
- Lei Yin
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yan Qi
- Operating Theater of the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yuting Jiang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, China.
| |
Collapse
|
3
|
Lu DX, Liu F, Wu H, Liu HX, Chen BY, Yan J, Lu Y, Sun ZG. Wumei pills attenuates 5-fluorouracil-induced intestinal mucositis through Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway and microbiota regulation. World J Gastroenterol 2022; 28:4574-4599. [PMID: 36157934 PMCID: PMC9476879 DOI: 10.3748/wjg.v28.i32.4574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radiotherapy and chemotherapy can kill tumor cells and improve the survival rate of cancer patients. However, they can also damage normal cells and cause serious intestinal toxicity, leading to gastrointestinal mucositis[1]. Traditional Chinese medicine is effective in improving the side effects of chemotherapy. Wumei pills (WMP) was originally documented in the Treatise on Exogenous Febrile Diseases. It has a significant effect on chronic diarrhea and other gastrointestinal diseases, but it is not clear whether it affects chemotherapy-induced intestinal mucositis (CIM).
AIM To explore the potential mechanism of WMP in the treatment of CIM through experimental research.
METHODS We used an intraperitoneal injection of 5-fluorouracil (5-Fu) to establish a CIM mouse model and an oral gavage of WMP decoction (11325 and 22650 mg/kg) to evaluate the efficacy of WMP in CIM. We evaluated the effect of WMP on CIM by observing the general conditions of the mice (body weight, food intake, spleen weight, diarrhea score, and hematoxylin and eosin stained tissues). The expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, and myeloperoxidase (MPO), as well as the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathway proteins and tight junction proteins (zonula occludens-1, claudin-1, E-cadherin, and mucin-2) was determined. Furthermore, intestinal permeability, intestinal flora, and the levels of short-chain fatty acids (SCFA) were also assessed.
RESULTS WMP effectively improved the body weight, spleen weight, food intake, diarrhea score, and inflammatory status of the mice with intestinal mucositis, which preliminarily confirmed the efficacy of WMP in CIM. Further experiments showed that in addition to reducing the levels of TNF-α, IL-1β, IL-6, and MPO and inhibiting the expression of the TLR4/MyD88/NF-κB pathway proteins, WMP also repaired the integrity of the mucosal barrier of mice, regulated the intestinal flora, and increased the levels of SCFA (such as butyric acid).
CONCLUSION WMP can play a therapeutic role in CIM by alleviating inflammation, restoring the mucosal barrier, and regulating gut microbiota.
Collapse
Affiliation(s)
- Dong-Xue Lu
- Department of Nutrition, Acupuncture and Moxibustion and Massage College & Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Feng Liu
- Department of Orthopaedics, Nanjing Pukou District Chinese Medicine Hospital, Nanjing 210000, Jiangsu Province, China
| | - Hua Wu
- Department of Nutrition, Acupuncture and Moxibustion and Massage College & Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Hai-Xia Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Bing-Yu Chen
- Department of Geriatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 451150, Henan Province, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yin Lu
- Key Pharmacology Laboratory of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhi-Guang Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
4
|
Fan Y, Li Z, Wu L, Lin F, Shao J, Ma X, Yao Y, Zhuang W, Wang Y. Solasodine, Isolated from Solanum sisymbriifolium Fruits, Has a Potent Anti-Tumor Activity Against Pancreatic Cancer. Drug Des Devel Ther 2021; 15:1509-1519. [PMID: 33888977 PMCID: PMC8054575 DOI: 10.2147/dddt.s266746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increasing evidences have revealed that solasodine, isolated from Solanum sisymbriifolium fruits, has multiple functions such as anti-oxidant, anti-tumor and anti-infection. However, its role in pancreatic cancer has not been well studied. METHODS To explore the role of solasodine in pancreatic cancer, human pancreatic cell lines including SW1990 and PANC1 were treated with different concentrations of solasodine for 48 h, and cell viability was evaluated by MTT assay, cell invasion and migration were evaluated by Transwell assay. The effect of solasodine on the apoptosis of SW1990 and PANC1 cells was detected by flow cytometry. To further explore the antitumor effect of solasodine in vivo, an SW1990 tumor-bearing mouse model was constructed. The effects of solasodine on cytokines in the serum of SW1990 tumor-bearing mice were also evaluated by ELISA assay. RESULTS Specifically, in vitro, solasodine could significantly inhibit the proliferation of pancreatic cancer cell lines SW1990 and PANC1 cells. Flow cytometric analysis indicated that solasodine could induce apoptosis of SW1990 and PANC1 cells. Western blot assay indicated that solasodine could significantly inhibit the activation of Cox-2/Akt/GSK3β signal pathway. Meanwhile, the release of Cytochrome c from mitochondria to cytoplasm which can raise the caspases cascade (C-caspase 3 and C-caspase 9) was significantly enhanced by solasodine. In vivo, the results showed that solasodine had potent anti-tumor activities with a lower cytotoxicity. In addition, the serum TNF-α, IL-2 and IFN-γ levels in SW1990 tumor-bearing mice after the treatment of solasodine was significantly increased. CONCLUSION Taken together, our results suggested that the solasodine could prevent the progression of pancreatic cancer by inhibiting proliferation and promoting apoptosis, as well as stimulating immunity, suggesting that solasodine might be a potential therapeutic strategy for pancreatic cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Fruit/chemistry
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Conformation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Solanaceous Alkaloids/chemistry
- Solanaceous Alkaloids/isolation & purification
- Solanaceous Alkaloids/pharmacology
- Solanum/chemistry
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yingchao Fan
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Zhumeng Li
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Liting Wu
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Feng Lin
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Jinfeng Shao
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Xiaoyan Ma
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Yonghua Yao
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Wenfang Zhuang
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Yuan Wang
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| |
Collapse
|
5
|
Zhu T, Lou Q, Shi Z, Chen G. Identification of key miRNA-gene pairs in gastric cancer through integrated analysis of mRNA and miRNA microarray. Am J Transl Res 2021; 13:253-269. [PMID: 33527022 PMCID: PMC7847513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the current bioinformatic methods have been increasingly applied in the field of oncological research. In this study, we expect a better understanding of the molecular mechanism of gastric cancer from the bioinformatic methods. By systematically addressing the differential expression of microRNAs (miRNAs) and mRNAs between gastric cancer specimens and normal gastric specimens with the application of bioinformatics tools, A total of 206 DEGs and 38 DEMs were identified. The Gene Ontology (GO) analysis of Annotation, Visualization and Integrated Discovery (DAVID) database revealed that the differentially expressed genes (DEGs) were significantly enriched in biological process, molecular function and cellular component, while Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed DEGs were significantly enriched in 8 signal pathways. The miRNA-gene regulatory network was constructed based on 385 miRNA-gene (DEM-DEG) pairs, consisting of 35 miRNAs and 107 target genes. In the regulatory network, the top 5 up-regulated genes were Transmembrane Protease, Serine 11B (TMPRSS11B), regulator of G protein signaling 1 (RGS1), cysteine rich angiogenic inducer 61 (CYR61), inhibin subunit beta A (INHBA), syntrophin gamma 1 (SNTG1), and the top 5 down-regulated genes were tumor necrosis factor receptor superfamily, member 19 (TNFRSF19), pleckstrin homology domain containing B2 (PLEKHB2), Tax1 binding protein 3 (TAX1BP3), presenilin enhancer, gamma-secretase subunit (PSENEN), NME/NM23 nucleoside diphosphate kinase 3 (NME3). Based on the gastric cancer patient database from Kaplan-Meier Plotter tools, we found that 8 of 10 genes with most significant changes in the miRNA-gene regulatory network possessed a prognostic value for survival time of gastric cancer patients. Patients with higher level of RGS1, PLEKHB2, TAX1BP3 and PSENEN in gastric cancer had a longer survival time compared with the patients with lower level of these genes. On the contrary, patients with higher level of INHBA, SNTG1, TNFRSF19 and NME3 were found associated with a shorter survival time. In conclusion, our findings provided several potential targets regarding gastric cancer, which may result in a new strategy to treat gastric cancer from a system rather than a single-gene perspective.
Collapse
Affiliation(s)
- Tieming Zhu
- Department of General Surgery, Hangzhou First People’s HospitalHangzhou, Zhejiang Province, China
| | - Qiuyue Lou
- Department of Health Education, Zhuji People’s Hospital of Zhejiang ProvinceShaoxing, Zhejiang Province, China
| | - Zhewei Shi
- Department of Cardiology, Zhuji People’s Hospital of Zhejiang ProvinceShaoxing, Zhejiang Province, China
| | - Ganghong Chen
- Department of General Surgery, Zhuji People’s Hospital of Zhejiang ProvinceShaoxing, Zhejiang Province, China
| |
Collapse
|
6
|
Pinus thunbergii Parl. Extracts Reduce Acute Inflammation by Targeting Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7924645. [PMID: 33519946 PMCID: PMC7817271 DOI: 10.1155/2021/7924645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 02/01/2023]
Abstract
Pinus thunbergii Parl. (PTP) has traditionally been used for edible and medicinal purposes to treat several disorders, including diabetes and neuralgia. Therefore, this study sought to evaluate the inhibitory effects of PTP leaf ethanol extracts on acute inflammation. Moreover, the reactive oxygen species (ROS) scavenging activity, superoxide dismutase (SOD) activity, lipopolysaccharide (LPS)-induced nitric oxide (NO) generation, and H2O2-induced lipid peroxidation capacity of PTP were assessed in vitro in RAW 264.7 macrophages. Our results suggest that PTP prevents cell damage caused by oxidative free radicals and downregulates the expression of LPS-induced inflammation-associated factors including inducible nitric oxidase synthetase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). PTP inhibited NO production by 53.5% (P < 0.05) and iNOS expression by 71.5% (P < 0.01) at 100 µg/mL. PTP at 100 µg/mL also inhibited ROS generation by 58.2% (P < 0.01) and SOD activity by 29.3%, as well as COX-2 expression by 83.3% (P < 0.01) and PGE2 expression by 98.6% (P < 0.01). The anti-inflammatory effects of PTP were confirmed in vivo using an arachidonic acid (AA)-induced ear edema mouse model. Ear thickness and myeloperoxidase (MPO) activity were evaluated as indicators of inflammation. PTP inhibited edema formation by 64.5% (P < 0.05) at 1.0 mg/ear. A total of 16 metabolites were identified in PTP extracts and categorized into subgroups, including two phenolic acids (mainly quinic acid), seven flavonoids, five lignans, one sesquiterpenoid, and one long-chain fatty acid. Therefore, our results suggest that PTP possesses anti-inflammatory properties.
Collapse
|
7
|
Luo HQ, He YF, Yan Y, Wu SS, Hu XX, Ke LH, Niu JY, Li HM, Xu HJ. The role of prostaglandin E receptor 2 and epidermal growth factor receptor in esophageal squamous cell carcinoma patients with (pN+) regional lymph node metastasis. Transl Cancer Res 2019; 8:1233-1241. [PMID: 35116865 PMCID: PMC8799140 DOI: 10.21037/tcr.2019.06.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/24/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND To find the relationship between prostaglandin E receptor 2 (EP2) and epidermal growth factor receptor (EGFR) in esophageal squamous cell carcinoma (ESCC) patients with regional lymph nodes metastasis (pN+) who had undergone curative resection, and to analyze them in the role of judging prognosis. METHODS Sixty-three patients with ESCC who underwent attempted curative esophagectomy with lymph node metastasis were collected. Immunohistochemistry (IHC) was used to analyse the expression of EP2 and EGFR in tumor tissues. We analyzed the relationship between the two markers. Furthermore, we analyzed the role of EP2 and EGFR in disease-free survival (DFS) and overall survival (OS). RESULTS The expression rate of EP2 and EGFR in this study were 73.0%, 85.7%, respectively. And the EP2 status was closely related with the expression of EGFR in tumor tissues (χ2=0.260, P=0.011). The patients with EP2 or EGFR positive expression had a shorter DFS and OS than the negative group. Further analysis found EGFR is an important prognostic factor for DFS and OS (P<0.001), the expression of EP2 was related with PFS (P=0.048), but it was not an independent influencing factors for OS (P>0.05). CONCLUSIONS The expression of EP2 and EGFR were high in tumor tissues of (pN+) ESCC, and they are playing a key role in the prognosis of ESCC patients with local lymph node metastases.
Collapse
Affiliation(s)
- Hui-Qin Luo
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yi-Fu He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ying Yan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Shu-Sheng Wu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiao-Xiu Hu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Li-Hong Ke
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jia-Yu Niu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hui-Min Li
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hui-Jun Xu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
8
|
Wan Y, Xu L, Liu Z, Yang M, Jiang X, Zhang Q, Huang J. Utilising network pharmacology to explore the underlying mechanism of Wumei Pill in treating pancreatic neoplasms. Altern Ther Health Med 2019; 19:158. [PMID: 31272505 PMCID: PMC6611005 DOI: 10.1186/s12906-019-2580-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
Abstract
Background Wumei Pill (WMP), a famous herbal formula, has been widely used to treat digestive system diseases in clinical practice in China for centuries. We have found a correlation between the indications of WMP and the typical symptoms of pancreatic neoplasms. However, the pharmacological mechanisms of WMP still remain unknown. Methods In the present work, we used a network pharmacological method to predict its underlying complex mechanism of treating pancreatic neoplasms. Firstly, we obtained relative compounds of WMP based on TCMSP database, TCM database@Taiwan and TCMID database and collected potential targets of these compounds by target fishing. Then we built the pancreatic neoplasms target database by CTD, TTD, PharmGKB. Based on the matching results between WMP potential targets and pancreatic neoplasms targets, we built a PPI network to analyze the interactions among these targets and screen the hub targets by topology. Furthermore, DAVID bioinformatics resources were utilized for the enrichment analysis on GO_BP and KEGG. Results A total of 80 active ingredients and 77 targets of WMP were picked out. The results of DAVID enrichment analysis indicated that 58 cellular biological processes (FDR < 0.01) and 17 pathways (FDR < 0.01) of WMP mostly participated in the complex treating effects associated with proliferation, apoptosis, inflammatory response and angiogenesis. Moreover, 17 hub nodes of WMP (PTGS2, BCL2, TP53, IL6, MAPK1, EGFR, EGF, CASP3, JUN, MAPK8, MMP9, VEGFA, TNF, MYC, AKT1, FOS and TGFB1) were recognized as potential targets of treatments, implying the underlying mechanisms of WMP acting on pancreatic neoplasms. Conclusion WMP could alleviate the symptoms of pancreatic neoplasms through the molecular mechanisms predicted by network pharmacology. This study proposes a strategy to elucidate the mechanisms of Traditional Chinese Medicine (TCM) at the level of network pharmacology. Electronic supplementary material The online version of this article (10.1186/s12906-019-2580-y) contains supplementary material, which is available to authorized users.
Collapse
|