1
|
Xiong RG, Huang SY, Wu SX, Zhou DD, Yang ZJ, Saimaiti A, Zhao CN, Shang A, Zhang YJ, Gan RY, Li HB. Anticancer Effects and Mechanisms of Berberine from Medicinal Herbs: An Update Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144523. [PMID: 35889396 PMCID: PMC9316001 DOI: 10.3390/molecules27144523] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/25/2022]
Abstract
Cancer has been a serious public health problem. Berberine is a famous natural compound from medicinal herbs and shows many bioactivities, such as antioxidant, anti-inflammatory, antidiabetic, anti-obesity, and antimicrobial activities. In addition, berberine shows anticancer effects on a variety of cancers, such as breast, lung, gastric, liver, colorectal, ovarian, cervical, and prostate cancers. The underlying mechanisms of action include inhibiting cancer cell proliferation, suppressing metastasis, inducing apoptosis, activating autophagy, regulating gut microbiota, and improving the effects of anticancer drugs. This paper summarizes effectiveness and mechanisms of berberine on different cancers and highlights the mechanisms of action. In addition, the nanotechnologies to improve bioavailability of berberine are included. Moreover, the side effects of berberine are also discussed. This paper is helpful for the prevention and treatment of cancers using berberine.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Yun-Jian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|
2
|
Mechanism of Action of Zhi Gan Cao Decoction for Atrial Fibrillation and Myocardial Fibrosis in a Mouse Model of Atrial Fibrillation: A Network Pharmacology-Based Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4525873. [PMID: 35720023 PMCID: PMC9203184 DOI: 10.1155/2022/4525873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Atrial fibrillation (AF), a commonly seen cardiac disease without optimal curative treatment option, is usually treated by traditional Chinese medicine in China. The Zhi-Gan-Cao decoction (ZGCD) is an alternative medicine for clinical use and has definitive effects. It remains to be defined regarding the specific components and related mechanisms of ZGCD for the treatment of AF. We determined the primary constituents and major targets of the herbs in ZGCD using the TCMSP, HERB, and BATMAN-TCM databases. The UniProt databank database amended and combined the prospective names to supply objective data and records. Every target connected to AF was generated using the GeneCards databank, Drugbank database, TTD, Disgenet database, and OMIM. After identifying possible common targets between ZGCD and AF, the interface network illustration “ZGCD component-AF-target” was created using Cytoscape. We obtained 175 constituents and 839 targets for seven herbal drug categories in the ZGCD and identified 1008 targets of AF. After merging and removing repetitions, 136 collective targets between the ZGCD and AF were removed using the Cytoscape system. These renowned targets were generated from 38 suitable components from among the 157 components. GO enhancement examination and KEGG enrichment analysis by Metascape identified the close connection between the critical target genes and 20 signaling pathways. Then, we injected isoproterenol subcutaneously into the mouse and gave gavage with roasted licorice soup. Two weeks later, mouse were processed and sampled for testing. The results of HE and Masson staining showed that ZGCD effectively alleviated the degree of myocardial fibrosis. As indicated by qRT-PCR and Western blotting, ZGCD significantly reduced COL1A1, COL1A2, COL3A1, and TGF-β1 in myocardial fibrotic tissue to reduce myocardial fibrosis and treat AF by interfering with the expression of COL1A1, COL1A2, COL3A1, and TGF-β1 in myocardial tissue. ZGCD may treat AF by lowering the degree of myocardial fibrosis.
Collapse
|
3
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
4
|
Cai Y, Xin Q, Lu J, Miao Y, Lin Q, Cong W, Chen K. A New Therapeutic Candidate for Cardiovascular Diseases: Berberine. Front Pharmacol 2021; 12:631100. [PMID: 33815112 PMCID: PMC8010184 DOI: 10.3389/fphar.2021.631100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death in the world. However, due to the limited effectiveness and potential adverse effects of current treatments, the long-term prognosis of CVD patients is still discouraging. In recent years, several studies have found that berberine (BBR) has broad application prospects in the prevention and treatment of CVD. Due to its effectiveness and safety for gastroenteritis and diarrhea caused by bacterial infections, BBR has been widely used in China and other Asian countries since the middle of the last century. The development of pharmacology also provides evidence for the multi-targets of BBR in treating CVD. Researches on CVD, such as arrhythmia, atherosclerosis, dyslipidemia, hypertension, ischemic heart disease, myocarditis and cardiomyopathy, heart failure, etc., revealed the cardiovascular protective mechanisms of BBR. This review systematically summarizes the pharmacological research progress of BBR in the treatment of CVD in recent years, confirming that BBR is a promising therapeutic option for CVD.
Collapse
Affiliation(s)
- Yun Cai
- Doctoral Candidate, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jinjin Lu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qian Lin
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Keji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
5
|
Wang Y, Du P, Jiang D. Berberine functions as a negative regulator in lipopolysaccharide -induced sepsis by suppressing NF-κB and IL-6 mediated STAT3 activation. Pathog Dis 2020; 78:5898670. [PMID: 32857851 DOI: 10.1093/femspd/ftaa047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 01/05/2023] Open
Abstract
Sepsis is a deadly complication raised by bacterial pathogens-induced dysregulated innate inflammatory response. Thus, anti-inflammatory is a potential therapeutic treatment for septic patients. Numerous evidence exhibited that berberine possesses potent anti-inflammatory, anti-apoptotic and anti-oxidative activities. However, the effect of berberine on sepsis is not fully understood. The anti-inflammatory effect of berberine was evaluated using lipopolysaccharide (LPS)-induced macrophages differentiation model in vitro and using LPS/D-galactosamine-challenged septic mice model in vivo. The secreted protein levels were determined by ELISA assay. The multiple targets mRNA and protein levels were measured by quantitative RT-PCR and western blot assay, respectively. Our study demonstrated that administration of berberine significantly attenuated lung tissue injury, and potently increased the survival rate of septic mice by modulating excessive inflammatory response with negligible side-effects. We further found that berberine inhibited the expression of tumor necrosis factor (TNF)-α, interleukin-(IL)-1β and IL-6 via suppressing nuclear factor kappa B subunit 1 (NF-κB) signaling activation. Our study strongly supported the concept that berberine may serve as a single drug or a promising adjuvant that can be used in conjunction with other medications for the treatment of septic patients.
Collapse
Affiliation(s)
- Yin Wang
- Department of Intensive Medicine, the Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China
| | - Pengfei Du
- Department of Intensive Medicine, the Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China
| | - Donghui Jiang
- Department of Intensive Medicine, the Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China
| |
Collapse
|