1
|
Ibrahim NH, Taha GM, Hagaggi NSA, Moghazy MA. Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals. BMC Chem 2024; 18:7. [PMID: 38184656 PMCID: PMC10771699 DOI: 10.1186/s13065-023-01105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
This study marks a pioneering effort in utilizing Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr., (commonly known as acacia raddiana) leaves as both a reducing and stabilizing agent in the green "eco-friendly" synthesis of silver nanoparticles (AgNPs). The research aimed to optimize the AgNPs synthesis process by investigating the influence of pH, temperature, extract volume, and contact time on both the reaction rate and the resulting AgNPs' morphology as well as discuss the potential of AgNPs in detecting some heavy metals. Various characterization methods, such as UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), Zeta sizer, EDAX, and transmitting electron microscopy (TEM), were used to thoroughly analyze the properties of the synthesized AgNPs. The XRD results verified the successful production of AgNPs with a crystallite size between 20 to 30 nm. SEM and TEM analyses revealed that the AgNPs are primarily spherical and rod-shaped, with sizes ranging from 8 to 41 nm. Significantly, the synthesis rate of AgNPs was notably higher in basic conditions (pH 10) at 70 °C. These results underscore the effectiveness of acacia raddiana as a source for sustainable AgNPs synthesis. The study also examined the AgNPs' ability to detect various heavy metal ions colorimetrically, including Hg2+, Cu2+, Pb2+, and Co2+. UV-Vis spectroscopy proved useful for this purpose. The color of AgNPs shifts from brownish-yellow to pale yellow, colorless, pale red, and reddish yellow when detecting Cu2+, Hg2+, Co2+, and Pb2+ ions, respectively. This change results in an alteration of the AgNPs' absorbance band, vanishing with Hg2+ and shifting from 423 to 352 nm, 438 nm, and 429 nm for Cu2+, Co2+, and Pb2+ ions, respectively. The AgNPs showed high sensitivity, with detection limits of 1.322 × 10-5 M, 1.37 × 10-7 M, 1.63 × 10-5 M, and 1.34 × 10-4 M for Hg2+, Cu2+, Pb2+, and Co2+, respectively. This study highlights the potential of using acacia raddiana for the eco-friendly synthesis of AgNPs and their effectiveness as environmental sensors for heavy metals, showcasing strong capabilities in colorimetric detection.
Collapse
Affiliation(s)
- Nesma H Ibrahim
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Gharib M Taha
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Noura Sh A Hagaggi
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Marwa A Moghazy
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| |
Collapse
|
2
|
Dharshini KS, Yokesh T, Mariappan M, Ameen F, Amirul Islam M, Veerappan A. Photosynthesis of silver nanoparticles embedded paper for sensing mercury presence in environmental water. CHEMOSPHERE 2023; 329:138610. [PMID: 37028721 DOI: 10.1016/j.chemosphere.2023.138610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Heavy metals released by anthropogenic activities are extremely toxic to animals and plants due to their bioaccumulative and persistent environmental presence. In the current study, silver nanoparticles (AgNPs) were synthesized utilizing eco-friendly processes, and their potential in colorimetric Hg2+ ion sensing in environmental samples was examined. An aqueous extract of Hemidesmus indicus root (Sarsaparilla Root, ISR) rapidly converts silver ions into AgNPs within 5 min of exposure to sunlight. Transmission electron microscopy confirms that ISR-AgNPs are spherical, ranging from 15 to 35 nm. Fourier-transform infrared spectroscopy revealed phytomolecules stabilized the NPs with hydroxyl and carbonyl substituents. The ISR-AgNPs detect Hg2+ ions by a colour change that can be seen with the naked eye within 1 min. The probe is interference-free and detects the presence of Hg2+ ions in sewage water. A method for fabricating ISR-AgNPs onto paper was disclosed, and this portable ISR-AgNPs embedded paper device was found to be good at sensing mercury present in the water. The findings show that environmentally friendly synthesized AgNPs can contribute to developing onsite colorimetric sensors.
Collapse
Affiliation(s)
- Karnan Singaravelu Dharshini
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - T Yokesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Mariappan Mariappan
- Department of Chemistry, SRM IST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Amirul Islam
- Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Anbazhagan Veerappan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
3
|
Choudhary NK, Mittapelli LL, Kumar Roy P, Das G, Mandal M, Gore KR. Vinyl substituted triphenylamine based turn-off fluorescent probe for selective and sensitive detection of mercury (II) in water and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121887. [PMID: 36162211 DOI: 10.1016/j.saa.2022.121887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Here, we report vinyl substituted triphenylamine (TPA-alk) fluorescent probe for the rapid and efficient detection of mercury ion (Hg2+) in water and biological environment. TPA-alk detects Hg2+ selectively over a wide range of competitive metal ions with a blue shift of 43 nm in the UV absorbance spectrum. The detection limit is found to be 0.146 µM (29.2 ppb) with high selectivity over a wide range of competitive metal ions. DFT study explains the blue shift in the UV-vis absorption band of the optical probe upon the addition of Hg2+. Cell viability assay illustrates that the probe is biocompatible and it has low cytotoxicity even at its higher concentration. Cell imaging studies demonstrate the efficiency of the TPA-alk probe for the micromolar detection of mercury (II) in live BMG1 cells.
Collapse
Affiliation(s)
- Nishant Kumar Choudhary
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
4
|
Rapid Detection of Mercury Ions Using Sustainable Natural Gum-Based Silver Nanoparticles. Catalysts 2022. [DOI: 10.3390/catal12111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fabrication of metal nanostructures using natural products has attracted scientists and researchers due to its renewable and environmentally benign availability. This work has prepared an eco-friendly, low-cost, and rapid colorimetric sensor of silver nanoparticles using tree gum as a reducing and stabilizing agent. Several characterization techniques have been exploited to describe the synthesized nanosensor morphology and optical properties. Ultraviolet−Visible (UV−Vis) spectroscopy has been used for monitoring the localized plasmon surface area. High-resolution transmission electron microscopy (HR-TEM) illustrated the size and shape of silver nanoparticles. X-ray diffraction spectra showed the crystallography and purity of the product. Silver nanoparticles decorated with almond gum molecules (AgNPs@AG) demonstrated high sensitivity and colorimetric detection of mercury ions in water samples. The method is based on the aggregation of AgNPs and the disappearing yellow color of AgNPs via a spectrophotometer. The detection limit of this method was reported to be 0.5 mg/L. This work aimed to synthesize a rapid, easy-preparation, eco-friendly, and efficient naked-eye colorimetric sensor to detect toxic pollutants in aqueous samples.
Collapse
|
5
|
Selective and Ultrasensitive Spectroscopic Detection of Mercuric Ion in Aqueous Systems Using Embonic Acid Functionalized Silver Nanoparticle. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Bulka CM, Eaves LA, Gardner AJ, Parsons PJ, Galusha AL, Roell KR, Smeester L, O’Shea TM, Fry RC. Prenatal exposure to multiple metallic and metalloid trace elements and the risk of bacterial sepsis in extremely low gestational age newborns: A prospective cohort study. FRONTIERS IN EPIDEMIOLOGY 2022; 2:958389. [PMID: 36405975 PMCID: PMC9674331 DOI: 10.3389/fepid.2022.958389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Prenatal exposures to metallic and metalloid trace elements have been linked to altered immune function in animal studies, but few epidemiologic studies have investigated immunological effects in humans. We evaluated the risk of bacterial sepsis (an extreme immune response to bacterial infection) in relation to prenatal metal/metalloid exposures, individually and jointly, within a US-based cohort of infants born extremely preterm. METHODS We analyzed data from 269 participants in the US-based ELGAN cohort, which enrolled infants delivered at <28 weeks' gestation (2002-2004). Concentrations of 8 trace elements-including 4 non-essential and 4 essential-were measured using inductively coupled plasma tandem mass spectrometry in umbilical cord tissue, reflecting in utero fetal exposures. The infants were followed from birth to postnatal day 28 with bacterial blood culture results reported weekly to detect sepsis. Discrete-time hazard and quantile g-computation models were fit to estimate associations for individual trace elements and their mixtures with sepsis incidence. RESULTS Approximately 30% of the extremely preterm infants developed sepsis during the follow-up period (median follow-up: 2 weeks). After adjustment for potential confounders, no trace element was individually associated with sepsis risk. However, there was some evidence of a non-monotonic relationship for cadmium, with hazard ratios (HRs) for the second, third, and fourth (highest) quartiles being 1.13 (95% CI: 0.51-2.54), 1.94 (95% CI: 0.87-4.32), and 1.88 (95% CI: 0.90-3.93), respectively. The HRs for a quartile increase in concentrations of all 8 elements, all 4 non-essential elements, and all 4 essential elements were 0.92 (95% CI: 0.68-1.25), 1.19 (95% CI: 0.92-1.55), and 0.77 (95% CI: 0.57-1.06). Cadmium had the greatest positive contribution whereas arsenic, copper, and selenium had the greatest negative contributions to the mixture associations. CONCLUSIONS We found some evidence that greater prenatal exposure to cadmium was associated with an increased the risk of bacterial sepsis in extremely preterm infants. However, this risk was counteracted by a combination of arsenic, copper, and selenium. Future studies are needed to confirm these findings and to evaluate the potential for nutritional interventions to prevent sepsis in high-risk infants.
Collapse
Affiliation(s)
- Catherine M. Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amaree J. Gardner
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, United States
| | - Aubrey L. Galusha
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, United States
| | - Kyle R. Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Hall R, Pal D, Ariya PA. Novel Dynamic Technique, Nano-DIHM, for Rapid Detection of Oil, Heavy Metals, and Biological Spills in Aquatic Systems. Anal Chem 2022; 94:11390-11400. [PMID: 35929664 DOI: 10.1021/acs.analchem.2c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous anthropogenic and natural particle contaminants exist in diverse aquatic systems, with widely unknown environmental fates. We coupled a flow tube with a digital in-line holographic microscopy (nano-DIHM) technique for aquatic matrices, for in situ real-time analysis of particle size, shape, and phase. Nano-DIHM enables 4D tracking of particles in water and their transformations in three-dimensional space. We demonstrate that nano-DIHM can be automated to detect and track oil spills/oil droplets in dynamic systems. We provide evidence that nano-DIHM can detect the MS2 bacteriophage as a representative biological-viral material and mercury-containing particles alongside other heavy metals as common toxic contaminants. Nano-DIHM shows the capability of observation of combined materials in water, characterizing the interactions of various particles in mixtures, and particles with different coatings in a suspension. The observed sizes of the particles and droplets ranged from ∼1 to 200 μm. We herein demonstrate the ability of nano-DIHM to characterize and distinguish particle-based contaminants in water and their interactions in both stationary and dynamic modes with a 62.5 millisecond time resolution. The fully automated software for dynamic and real-time detection of contaminants will be of global significance. A comparison is also made between nano-DIHM and established techniques such as S/TEM for their different capabilities. Nano-DIHM can provide a range of physicochemical information in stationary and dynamic modes, allowing life cycle analysis of diverse particle contaminants in different aquatic systems, and serve as an effective tool for rapid response for spills and remediation of natural waters.
Collapse
Affiliation(s)
- Ryan Hall
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 2K6, Canada
| | - Devendra Pal
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, Canada
| | - Parisa A Ariya
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 2K6, Canada.,Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, Canada
| |
Collapse
|
8
|
Rutkowska M, Falandysz J, Saba M, Szefer P, Misztal-Szkudlińska M, Konieczka P. A method for the analysis of methylmercury and total Hg in fungal matrices. Appl Microbiol Biotechnol 2022; 106:5261-5272. [PMID: 35779096 DOI: 10.1007/s00253-022-12043-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
The aim of the study was to develop an efficient method for the determination of monomethyl-mercury (MeHg) and total mercury (THg) content in materials such as fungal sporocarps and sclerotia. Certified Reference Materials (CRMs) with the assigned values of MeHg and THg as well as the control materials (dried mushrooms) with known content of THg were evaluated for method validation. Recovery of MeHg from reference materials was at the following levels: from tuna fish at 87.0 ± 2.3% (THg at 101.9 ± 1.2%), from fish protein at 99.4 ± 1.3% (THg at 92.70 ± 0.41%), and from dogfish liver at 96.45 ± 0.73%. Recovery of THg from the fungal control material CS-M-5 was at 104.01 ± 0.60% (contribution of MeHg in THg content was at 6.2%), from CS-M-4 at 101.1 ± 2.0% (contribution at 3.2%), from CS-M-3 at 100.55 ± 0.67% (contribution at 0.6%), and from CS-M-2 at 101.5 ± 2.7% (contribution at 3.7%). The content of MeHg in randomly selected wild fungi and their morphological parts was in the range from 0.006 to 0.173 mg kg-1 dry weight (dw). In the case of THg, the concentration values were in the range from 0.0108 to 10.27 mg kg-1 dw. The MeHg content in the control materials with the assigned THg values was determined. Since the control materials play an important role in all elements of the quality assurance system of measurement results, they can be used to analyse MeHg as the first control material for fungi. KEY POINTS: • An extraction procedure for MeHg analysis in fungi was developed and optimized. • Recovery of MeHg from the certified reference non-fungal materials was > 87%. • Fungal control materials with assigned THg concentration can serve also for MeHg analysis.
Collapse
Affiliation(s)
- Małgorzata Rutkowska
- Department of Analytical Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdańsk, Poland
| | - Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Lódź, Poland.
| | - Martyna Saba
- Główny Inspektorat Jakości Handlowej Artykułów Rolno-Spożywczych, Laboratorium Specjalistyczne w Gdyni, Al. Marszałka Piłsudskiego 8/12, Gdynia, 81-378, Poland
| | - Piotr Szefer
- Department of Food Sciences, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | | | - Piotr Konieczka
- Department of Analytical Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
9
|
Abstract
Single-molecule mechanochemical sensing (SMMS) is a novel biosensing technique using mechanical force as a signal transduction mechanism. In the mechanochemical sensing, the chemical binding of an analyte molecule to a sensing template is converted to mechanical signals, such as tensile force, of the template. Since mechanical force can be conveniently monitored by single-molecule tools, such as optical tweezers, magnetic tweezers, or Atomic Force Microscopy, mechanochemical sensing is often carried out at the single molecule level. In traditional format of ensemble sensing, sensitivity can be achieved via chemical or electrical amplifications, which are materials intensive and time-consuming. To address these problems, in 2011, we used the principle of mechanochemical coupling in a single molecular template to detect single nucleotide polymorphism (SNP) in DNA fragments. The single-molecule sensitivity in such SMMS strategy allows to removing complex amplification steps, drastically conserving materials and increasing temporal resolution in the sensing. By placing many probing units throughout a single-molecule sensing template, SMMS can have orders of magnitude better efficiency in the materials usage (i.e., high Atom Economy) with respect to the ensemble biosensing. The SMMS sensing probes also enable topochemical arrangement of different sensing units. By placing these units in a spatiotemporally addressable fashion, single-molecule topochemical sensors have been demonstrated in our lab to detect an expandable set of microRNA targets. Because of the stochastic behavior of single-molecule binding, however, it is challenging for the SMMS to accurately report analyte concentrations in a fixed time window. While multivariate analysis has been shown to rectify background noise due to stochastic nature of single-molecule probes, a template containing an array of sensing units has shown ensemble average behaviors to address the same problem. In this so-called ensemble single-molecule sensing, collective mechanical transitions of many sensing units occur in the SMMS sensing probes, which allows accurate quantification of analytes. For the SMMS to function as a viable sensing approach readily adopted by biosensing communities, the future of the SMMS technique relies on the reduction in the complexity and cost of instrumentation to report mechanical signals. In this account, we first explain the mechanism and main features of the SMMS. We then specify basic elements employed in SMMS. Using DNA as an exemplary SMMS template, we further summarize different types of SMMS which present multiplexing capability and increased throughput. Finally, recent efforts to develop simple and affordable high throughput methods for force generation and measurement are discussed in this Account for potential usage in the mechanochemical sensing.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Rabia Tahir
- Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
10
|
Santos JP, Mehmeti L, Slaveykova VI. Simple Acid Digestion Procedure for the Determination of Total Mercury in Plankton by Cold Vapor Atomic Fluorescence Spectroscopy. Methods Protoc 2022; 5:mps5020029. [PMID: 35448694 PMCID: PMC9029141 DOI: 10.3390/mps5020029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Plankton, at the bottom of the food web, play a central role in the entry of mercury into the aquatic biota. To investigate their role in mercury uptake, reliable analytical procedures for Hg analysis are highly sought. Wet digestion procedures for determining total mercury in different biological matrices have been established since years, however only few studies focused on planktonic samples. In the present work, a simple and cost-effective wet digestion method was developed for the determination of total mercury in samples of small plankton material using a cold vapor atomic fluorescence spectroscopy (CVAFS). The optimization of the digestion method was achieved by using glass vessels with Teflon caps, low amount of acids (3 mL w/w 65% HNO3 or 3 mL 50% v/v HNO3), a constant temperature of 85 °C, the presence and absence of pre-ultrasound treatment, and a continuous digestion period (12 h). Certified reference materials IAEA-450 (unicellular alga Scenedesmus obliquus) and BRC-414 (plankton matrix) were used to optimize and validate the digestion method. The recovery efficiency of the proposed method for IAEA-450 and BCR-414 (3.1 mg and 21.5 mg) ranged between 94.1 ± 7.6% and 97.2 ± 4.6%. The method displayed a good recovery efficiency and precision for plankton matrices of low size. Thus, allowing better digestion of planktonic samples for mercury analysis using CVAFS techniques.
Collapse
|
11
|
Dey N. Coordination-driven reversible supramolecular assembly formation at biological pH: Trace-level detection of Hg 2+ and I - ions in real life samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120447. [PMID: 34695678 DOI: 10.1016/j.saa.2021.120447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Pyridine coupled bisbenzimidazole probe has been developed for colorimetric sensing of heavy metal pollutants in the aqueous medium. Mechanistic investigation indicates that Hg2+ ions (detection limit: 7.5 ppb) bind to the pyridyl nitrogen ends and form linear supramolecular assembly. Red-shifted absorption and fluorescence maxima upon addition of Hg2+ ions were observed, presumably caused by charge transfer interaction and coordination-driven planarization of the biphenyl backbone. Additionally, the in-situ formed mercury complex was utilized for selective recognition of iodide ion (detection limit: 20.2 ppb). Considering its high sensitivity, the present system was utilized in analysing Hg2+ in natural water and in presence of albumin protein. The high recovery values ranging from 95 to 98% with substantially low relative standard deviation (<4%) confirm the suitability of the present method in estimating trace-level of Hg2+ even in real-life samples. Imaging of intracellular Hg2+ ion was also achieved in cervical cancer cells. Low-cost paper strips are designed for rapid, on-site detection of Hg2+ without engaging any sophisticated analytical tools or trained personnel.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078, Telangana, India.
| |
Collapse
|
12
|
Georghiou PE, Rahman S, Assiri Y, Valluru GK, Menelaou M, Alodhayb AN, Braim M, Beaulieu L. Development of calix[4]arenes modified at their narrow- and wide-rims as potential metal ions sensor layers for microcantilever sensors: further studies. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of a microcantilever (MCL) sensing device capable of simultaneously detecting several metal ionic species in aqueous media with low limits of detection requires a variety of sensing layers that are ion specific. Calix[4]arenes are robust molecules that can be easily modified and have been extensively studied for their ion binding properties. They are also capable of forming self-assembled monolayers (SAMs) on the gold layers of MCLs and are capable of detecting various metal ions with different anionic counterions in aqueous solutions. In this paper, we report on the effect of the alkoxy group in the narrow rim [O-(alkoxycarbonyl)methoxy] substituents of bimodal calix[4]arenes, which have been used as metal ion MCL sensing layers, using classical solution state experimental studies. A DFT computational study to compare the experimental results with several metal ions is also reported herein.
Collapse
Affiliation(s)
- Paris E. Georghiou
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Shofiur Rahman
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Yousif Assiri
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Gopi Kishore Valluru
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Abdullah N. Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mona Braim
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - L.Y. Beaulieu
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| |
Collapse
|
13
|
Identification of a novel click-derived 1,2,3-triazole as selective Hg2+ ion detector: computational and experimental investigations. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Guo Y, Hui CY, Liu L, Chen MP, Huang HY. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci Rep 2021; 11:13516. [PMID: 34188121 PMCID: PMC8242042 DOI: 10.1038/s41598-021-92878-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Engineered microorganisms have proven to be a highly effective and robust tool to specifically detect heavy metals in the environment. In this study, a highly specific pigment-based whole-cell biosensor has been investigated for the detection of bioavailable Hg(II) based on an artificial heavy metal resistance operon. The basic working principle of biosensors is based on the violacein biosynthesis under the control of mercury resistance (mer) promoter and mercury resistance regulator (MerR). Engineered biosensor cells have been demonstrated to selectively respond to Hg(II), and the specific response was not influenced by interfering metal ions. The response of violacein could be recognized by the naked eye, and the time required for the maximum response of violacein (5 h) was less than that of enhanced green fluorescence protein (eGFP) (8 h) in the single-signal output constructs. The response of violacein was almost unaffected by the eGFP in a double-promoter controlled dual-signals output construct. However, the response strength of eGFP was significantly decreased in this genetic construct. Exponentially growing violacein-based biosensor detected concentrations as low as 0.39 μM Hg(II) in a colorimetric method, and the linear relationship was observed in the concentration range of 0.78-12.5 μM. Non-growing biosensor cells responded to concentrations as low as 0.006 μM Hg(II) in a colorimetric method and in a Hg(II) containing plate sensitive assay, and the linear relationship was demonstrated in a very narrow concentration range. The developed biosensor was finally validated for the detection of spiked bioavailable Hg(II) in environmental water samples.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-Ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Min-Peng Chen
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hong-Ying Huang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
15
|
Zhang NX, Guo Y, Li H, Yang XQ, Gao CX, Hui CY. Versatile artificial mer operons in Escherichia coli towards whole cell biosensing and adsorption of mercury. PLoS One 2021; 16:e0252190. [PMID: 34038487 PMCID: PMC8153442 DOI: 10.1371/journal.pone.0252190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/11/2021] [Indexed: 01/17/2023] Open
Abstract
Mercury exists naturally and mainly as a man-made pollutant in the environment, where it exerts adverse effects on local ecosystems and living organisms. It is important to develop an appropriate synthetic biological device that recognizes, detects and removes the bioavailable fraction of environmental mercury. Both single-signal and double-signal output mercury biosensors were assembled using a natural mer operon as a template. Selectivity and sensitivity of whole-cell biosensors based on artificial mer operons were determined. Three whole-cell biosensors were highly stable at very high concentrations of mercuric chloride, and could detect bioavailable Hg(II) in the concentration range of 6.25-200 μM HgCl2. A novel Hg(II) bioadsorption coupled with biosensing artificial mer operon was assembled. This would allow Hg(II)-induced Hg(II) binding protein cell surface display and green fluorescence emission to be achieved simultaneously while retaining the linear relationship between fluorescent signal and Hg(II) exposure concentration. The present study provides an innovative way to simultaneously detect, quantify, and remove bioavailable heavy metal ions using an artificially reconstructed heavy metal resistance operon.
Collapse
Affiliation(s)
- Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hui Li
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Xue-Qin Yang
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chao-xian Gao
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
16
|
Pomal NC, Bhatt KD, Modi KM, Desai AL, Patel NP, Kongor A, Kolivoška V. Functionalized Silver Nanoparticles as Colorimetric and Fluorimetric Sensor for Environmentally Toxic Mercury Ions: An Overview. J Fluoresc 2021; 31:635-649. [PMID: 33609215 DOI: 10.1007/s10895-021-02699-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 11/24/2022]
Abstract
Nanoscience is a multifaceted field which encompasses metal nanoparticles (MNPs) having novel and size-related optical properties significantly different from the bulk level as well as at the atomic level. Amongst noble MNPs, the silver nanoparticles (AgNPs) have unique properties for metal interaction. Presently, there have been expedite reports which are taken under the review in virtue of sensing the mercury ions in aqueous media. Mercury dissemination in various forms contaminates the ecosystem. Globally mercury is ranked as the most toxic element and an urgent threat to humans since it causes major health issues. Employing MNPs, especially AgNPs for the detection of mercury ions is the economic, handy and apt method in contrast to time-consuming methods that use expensive instrumentations. The review highlights a study of colorimetric and fluorimetric detection of the level of Hg (II) ions in aqueous media selectively with high sensitivity in different courses of conditions using AgNPs synthesized by various approaches. Graphical abstract.
Collapse
Affiliation(s)
- Nandan C Pomal
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Keyur D Bhatt
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
| | - Krunal M Modi
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
| | - Ajay L Desai
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Nihal P Patel
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Anita Kongor
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223, Prague, Czech Republic.
| |
Collapse
|
17
|
Khose RV, Chakraborty G, Bondarde MP, Wadekar PH, Ray AK, Some S. Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg(ii). NEW J CHEM 2021. [DOI: 10.1039/d0nj06259f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have prepared red-fluorescent graphene quantum dots and utilized as a highly selective and sensitive fluorescence turn-off probe for detection of the toxic metal ion Hg2+ from guava leaf extract.
Collapse
Affiliation(s)
- Rahul V. Khose
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Mahesh P. Bondarde
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Pravin H. Wadekar
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Alok K. Ray
- Laser and Plasma Technology Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Professor
| | - Surajit Some
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| |
Collapse
|
18
|
Ahmad H, Sharfan IIB, Khan RA, Alsalme A. Effective Enrichment and Quantitative Determination of Trace Hg 2+ Ions Using CdS-Decorated Cellulose Nanofibrils. NANOMATERIALS 2020; 10:nano10112218. [PMID: 33171741 PMCID: PMC7694963 DOI: 10.3390/nano10112218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022]
Abstract
Water pollution caused by metal contamination is of serious concern. Direct determination of trace metal ions in real water samples remains challenging. A sample preparation technique is a prerequisite before analysis. Herein, we report the facile water-based hydrothermal synthesis of cadmium sulfide nanoparticles on a cellulose nanofiber surface to prepare a new adsorbent material. Field emission scanning electron microscopy, high-resolution tunneling electron microscopy, elemental mapping and X-ray photoelectron microscopy were used to characterize the surface morphology, structural determination, elemental composition and nature of bonding. The nanoadsorbent (cadmium-sulfide-decorated cellulose nanofibrils (CNFs@CdS)) was employed for the solid-phase extraction and determination of trace Hg(II) from aqueous media. The experimental conditions were optimized systematically and the data show a good Hg(II) adsorption capacity of 126.0 mg g−1. The CNFs@CdS adsorbent shows the selective removal of Hg(II) accordingly to the hard and soft acid–base theory of metal–ligand interaction. A high preconcentration limit of 0.36 µg L−1 was obtained with a preconcentration factor of 580. The lowest level of trace Hg(II) concentration, which was quantitatively analyzed by the proposed method, was found to be 0.06 µg L−1. No significant interferences from the sample matrix were observed in the extraction of Hg(II). Analysis of the standard reference material (SRM 1641d) was carried out to validate the proposed methodology. Good agreement between the certified and observed values indicates the applicability of the developed methodology for the analysis of Hg(II) in tap water, river water and industrial wastewater samples.
Collapse
Affiliation(s)
- Hilal Ahmad
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Ibtisam I. Bin Sharfan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (R.A.K.)
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (R.A.K.)
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (R.A.K.)
- Correspondence: ; Tel.: +96-654-051-8430
| |
Collapse
|
19
|
Farkhondeh T, Afshari R, Mehrpour O, Samarghandian S. Mercury and Atherosclerosis: Cell Biology, Pathophysiology, and Epidemiological Studies. Biol Trace Elem Res 2020; 196:27-36. [PMID: 31529242 DOI: 10.1007/s12011-019-01899-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Today atherosclerosis is considered as a main cause of death in the worldwide. There is a significant association between heavy metal exposure and atherosclerosis. In this study, we discussed the scientific literature about the effect of mercury on the pathogenesis of atherosclerosis. We also considered the epidemiological studies on mercury as a risk factor for atherosclerosis. Web of Science, Google Scholar, Medline, PubMed, and Scopus were searched by using the following keywords to 2019: (cardiovascular diseases OR atherosclerosis OR endothelial dysfunction) AND (mercury). Mercury has the potential to act as one of the novel risk factors for atherosclerosis development. The findings have indicated the role of mercury in the pathogenesis of atherosclerosis, vascular endothelial dysfunction, oxidative stress, inflammation, and dyslipidemia. Mercury can induce atherosclerosis indirectly via increasing the total cholesterol, triglycerides, and LDL-C levels as well as decreasing the HDL-C level. Mercury can be considered as a risk factor in the atherosclerosis progression. However, more studies are required to find the exact mechanisms involved in the pathogenesis of atherosclerosis induced by mercury.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Afshari
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Omid Mehrpour
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
20
|
Mahajan PG, Shin JS, Dige NC, Vanjare BD, Han Y, Choi NG, Kim SJ, Seo SY, Lee KH. Chelation enhanced fluorescence of rhodamine based novel organic nanoparticles for selective detection of mercury ions in aqueous medium and intracellular cell imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Zhang T, Lou X, Xu L, He S. Elemental mercury sensing by synchronously sweeping two multimode diode lasers. APPLIED OPTICS 2020; 59:3360-3368. [PMID: 32400446 DOI: 10.1364/ao.386105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
We propose a sum-frequency-generation (SFG) laser-based elemental mercury sensing method by mixing two low-cost multimode diode lasers (MDLs). The wavelengths of the two MDLs are synchronously scanned, which enlarges the whole coverage range of wavelength and improves the measurement stability. Correlation spectroscopy was used to eliminate the impact of environmental change and enhance and trace the absorption signal of the sample accurately. A novel data processing method was employed to extract the weak absorption signals from the background efficiently. A sensitivity of ${0.1}\;\unicode{x00B5} {{\rm g/m}^3}$0.1µg/m3 (11 ppt) was achieved for 1-m path length and 10-s integration time. The sensing range was efficiently increased up to ${200}\;\unicode{x00B5} {{\rm g/m}^3}$200µg/m3 using a calibration curve based on a new mathematical analytical formula. Real-time monitoring of the mercury volatilization and diffusion process was experimentally demonstrated with a time resolution of 10 s. The performance of the system shows great practical value for the detection of elemental mercury in industrial applications.
Collapse
|
22
|
Özyurt C, Üstükarcı H, Evran S, Telefoncu A. MerR‐fluorescent protein chimera biosensor for fast and sensitive detection of Hg
2+
in drinking water. Biotechnol Appl Biochem 2019; 66:731-737. [DOI: 10.1002/bab.1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Canan Özyurt
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
- Department of Chemistry and Chemical Processing Technologies Lapseki Vocational School Canakkale Onsekiz Mart University Canakkale Lapseki Turkey
| | - Handan Üstükarcı
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
| | - Serap Evran
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
| | - Azmi Telefoncu
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
- Bio‐sensing and Bioinformatics Nanotechnologies R & D Trade & Ind. Ltd Co TECHNOPARK EGE, Ege University 35100 Izmir Turkey
| |
Collapse
|
23
|
Padhan SK, Palei J, Rana P, Murmu N, Sahu SN. Sequential displacement strategy for selective and highly sensitive detection of Zn 2+, Hg 2+ and S 2- ions: An approach toward a molecular keypad lock. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:271-284. [PMID: 30340207 DOI: 10.1016/j.saa.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 05/14/2023]
Abstract
A thiocarbonohydrazone locked salicylidene based macrocycle ligand L has been synthesized and its ion sensing properties were examined by UV-visible and fluorescence spectroscopy. The macrocycle serves as a highly selective colorimetric sensor for Hg2+ ions while it acts as an excellent fluorescent sensor for Zn2+ ions by exhibiting a green fluorescence at 498 nm even in the presence of interfering ions. A detailed analysis of binding characteristics such as complex stoichiometry, association constant and detection limits of L toward Hg2+ and Zn2+ ions were evaluated by UV-visible and fluorescence experiments which revealed a stronger binding affinity and higher detection limit of L toward the mercury ions. Further, the sequential displacement strategy for the chromofluorogenic detection of Zn2+, Hg2+ and S2- ions by ligand L, has been studied comprehensively. Finally, the ion-responsive fluorescence output signal of L were employed to design a molecular keypad lock which could be accessible by two users having two different set of chemical passwords (inputs) through distinguishable optical trajectories.
Collapse
Affiliation(s)
- Subrata Kumar Padhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Jitendra Palei
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Punam Rana
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Narayan Murmu
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Satya Narayan Sahu
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India.
| |
Collapse
|
24
|
Yang PC, Wu T, Lin YW. Label-Free Colorimetric Detection of Mercury (II) Ions Based on Gold Nanocatalysis. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2807. [PMID: 30149653 PMCID: PMC6163656 DOI: 10.3390/s18092807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/01/2022]
Abstract
Herein, a label-free colorimetric nanosensor for Hg(II) is developed utilizing the hindering effect of Hg(II) on the kinetic aspect of gold nanoparticle (AuNPs) growth on the surface of gold nanostars (AuNSs). H-AuNS probes are synthesized and modified by 2-[4-(2-hydroxyethel) piperazine-1-yl] ethanesulfonic acid (HEPES). After the formulation of the reagents and testing conditions are optimized, HEPES-capped AuNSs (H-AuNSs) demonstrates good selectivity and sensitivity towards Hg(II) determination. A H-AuNS probe, in the presence of HCl/Au(III)/H₂O₂, is capable of detecting a Hg(II) concentration range of 1.0 nM⁻100 µM, with a detection limit of 0.7 nM, at a signal-to-noise ratio of 3.0, and a visual detection limit of 10 nM with naked eyes. For practicality, the H-AuNS probe is evaluated by measuring Hg(II) in the environmental water matrices (lake water and seawater) by a standard addition and recovery study. The detection limits for environmental samples are found to be higher than the lab samples, but they are still within the maximum allowable Hg concentration in drinking water (10 nM) set by the US Environmental Protection Agency (EPA). To create a unique nanosensor, the competitive interaction between Hg(II) and Pt(IV) toward the H-AuNSs probe is developed into a logic gate, improving the specificity in the detection of Hg(II) ions in water samples.
Collapse
Affiliation(s)
- Pei-Chia Yang
- Department of Chemistry, National Changhua University of Education, 1, Jin-De Road, Changhua City 50007, Taiwan.
| | - Tsunghsueh Wu
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818-3099, USA.
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, 1, Jin-De Road, Changhua City 50007, Taiwan.
| |
Collapse
|