1
|
Lu Y, Lu C, Luo Z, Chen P, Xiong H, Li W. Association between the systemic inflammatory response index and mortality in patients with sarcopenia. PLoS One 2024; 19:e0312383. [PMID: 39556533 PMCID: PMC11573146 DOI: 10.1371/journal.pone.0312383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Sarcopenia is closely linked to inflammation; however, the association between the systemic inflammatory response index (SIRI) and mortality in patients with sarcopenia remains unclear. This study aims to explore the relationship between SIRI and mortality in sarcopenia patients. METHODS We analyzed data from ten cycles of the National Health and Nutrition Examination Survey (NHANES) spanning 1999 to 2018, selecting 3,141 sarcopenia patients. Mortality data were obtained from the National Death Index up to December 31, 2019. Participants were divided into three groups based on the ranking of their SIRI values. The association between SIRI and mortality was assessed using Cox proportional hazards models, with smooth curve fitting employed to test the correlation. Sensitivity analyses, subgroup analyses, and interaction tests were conducted to validate the stability of the findings. RESULTS A total of 101,316 individuals were included in this study. During a median follow-up of 10.4 years (minimum follow-up time of approximately 0.08 years, maximum follow-up time of 20.75 years), 667 participants died. Kaplan-Meier (KM) analysis indicated a higher risk of mortality in the SIRI Q3 group. Cox regression analysis showed a significant association between the SIRI Q3 group and all-cause mortality [HR 1.24 (95% CI: 1.05, 1.47)] and cardiovascular disease mortality [HR 1.46 (95% CI: 1.04, 2.04)]. Subgroup analysis revealed that SIRI was significantly associated with all-cause mortality across various demographic characteristics (e.g., gender, diabetes, hypertension, cardiovascular disease). Sensitivity analysis, excluding participants with cardiovascular disease, those who died within two years of follow-up, and those under 50 years old, indicated higher hazard ratios (HRs) for all-cause and cardiovascular mortality in the SIRI Q3 group. CONCLUSION This study demonstrates a significant association between SIRI and an increased risk of mortality in sarcopenia patients aged 20 years and older.
Collapse
Affiliation(s)
- Yifan Lu
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengyin Lu
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhiqiang Luo
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pei Chen
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| | - Wangyang Li
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Meacci E, Chirco A, Garcia-Gil M. Potential Vitamin E Signaling Mediators in Skeletal Muscle. Antioxidants (Basel) 2024; 13:1383. [PMID: 39594525 PMCID: PMC11591548 DOI: 10.3390/antiox13111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Vitamin E (Vit E) deficiency studies underline the relevance of this vitamin in skeletal muscle (SkM) homeostasis. The knowledge of the effectors and modulators of Vit E action in SkM cells is limited, especially in aging and chronic diseases characterized by a decline in musculoskeletal health. Vit E comprises eight fat-soluble compounds grouped into tocopherols and tocotrienols, which share the basic chemical structure but show different biological properties and potentials to prevent diseases. Vit E has antioxidant and non-antioxidant activities and both favorable and adverse effects depending on the specific conditions and tissues. In this review, we focus on the actual knowledge of Vit E forms in SkM functions and new potential signaling effectors (i.e., bioactive sphingolipids and myokines). The possible advantages of Vit E supplementation in counteracting SkM dysfunctions in sarcopenia and under microgravity will also be discussed.
Collapse
Affiliation(s)
- Elisabetta Meacci
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
- Interuniversity Institute of Myology, University of Florence, 50134 Firenze, Italy
| | - Antony Chirco
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
| | - Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Via S. Zeno 31, 56127 Pisa, Italy;
| |
Collapse
|
3
|
Montagnani Marelli M, Macchi C, Ruscica M, Sartori P, Moretti RM. Anticancer Activity of Delta-Tocotrienol in Human Hepatocarcinoma: Involvement of Autophagy Induction. Cancers (Basel) 2024; 16:2654. [PMID: 39123382 PMCID: PMC11311296 DOI: 10.3390/cancers16152654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer. Surgical resection, tumor ablation, and liver transplantation are curative treatments indicated for early-stage HCC. The management of intermediate and advanced stages of pathology is based on the use of systemic therapies which often show important side effects. Vitamin E-derivative tocotrienols (TTs) play antitumoral properties in different tumors. Here, we analyzed the activity of delta-TT (δ-TT) on HCC human cell lines. (2) We analyzed the ability of δ-TT to trigger apoptosis, to induce oxidative stress, autophagy, and mitophagy in HepG2 cell line. We evaluated the correlation between the activation of autophagy with the ability of δ-TT to induce cell death. (3) The data obtained demonstrate that δ-TT exerts an antiproliferative and proapoptotic effect in HCC cells. Furthermore, δ-TT induces the release of mitochondrial ROS and causes a structural and functional alteration of the mitochondria compatible with a fission process. Finally, δ-TT triggers selective autophagy process removing dysfunctional mitochondria. Inhibition of autophagy reversed the cytotoxic action of δ-TT. (4) Our results demonstrate that δ-TT through the activation of autophagy could represent a potential new approach in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
- Department of Cardio-Thoracic-Vascular Diseases-Foundation, IRCCS Cà Granda Ospedale Maggiore Policlinico, 20162 Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
| |
Collapse
|
4
|
Md Shahrulnizam NAN, Mohd Efendy Goon MD, Ab Rahim S, Lew SW, Sheikh Abdul Kadir SH, Ibrahim E. Palm-based tocotrienol-rich fraction (TRF) supplementation modulates cardiac sod1 expression, fxr target gene expression, and tauro-conjugated bile acid levels in aleptinemic mice fed a high-fat diet. GENES & NUTRITION 2024; 19:3. [PMID: 38413846 PMCID: PMC10898183 DOI: 10.1186/s12263-024-00742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Tocotrienol-rich fraction (TRF) has been reported to protect the heart from oxidative stress-induced inflammation. It is, however, unclear whether the protective effects of TRF against oxidative stress involve the activation of farnesoid X receptor (fxr), a bile acid receptor, and the regulation of bile acid metabolites. In the current study, we investigated the effects of TRF supplementation on antioxidant activities, expression of fxr and its target genes in cardiac tissue, and serum untargeted metabolomics of high-fat diet-fed mice. Mice were divided into high-fat diet (HFD) with or without TRF supplementation (control) for 6 weeks. At the end of the intervention, body weight (BW), waist circumference (WC), and random blood glucose were measured. Heart tissues were collected, and the gene expression of sod1, sod2, gpx, and fxr and its target genes shp and stat3 was determined. Serum was subjected to untargeted metabolomic analysis using UHPLC-Orbitrap. In comparison to the control, the WC of the TRF-treated group was higher (p >0.05) than that of the HFD-only group, in addition there was no significant difference in weight or random blood glucose level. Downregulation of sod1, sod2, and gpx expression was observed in TRF-treated mice; however, only sod1 was significant when compared to the HFD only group. The expression of cardiac shp (fxr target gene) was significantly upregulated, but stat3 was significantly downregulated in the TRF-treated group compared to the HFD-only group. Biochemical pathways found to be influenced by TRF supplementation include bile acid secretion, primary bile acid biosynthesis, and biotin and cholesterol metabolism. In conclusion, TRF supplementation in HFD-fed mice affects antioxidant activities, and more interestingly, TRF also acts as a signaling molecule that is possibly involved in several bile acid-related biochemical pathways accompanied by an increase in cardiac fxr shp expression. This study provides new insight into TRF in deregulating bile acid receptors and metabolites in high-fat diet-fed mice.
Collapse
Affiliation(s)
- Nur Aliah Natasha Md Shahrulnizam
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohd Danial Mohd Efendy Goon
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sook Weih Lew
- Department of Pediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia.
| | - Effendi Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
5
|
Trugilho L, Alvarenga L, Cardozo LF, Barboza I, Leite M, Fouque D, Mafra D. Vitamin E and conflicting understandings in noncommunicable diseases: Is it worth supplementing? Clin Nutr ESPEN 2024; 59:343-354. [PMID: 38220396 DOI: 10.1016/j.clnesp.2023.12.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Vitamin E is a lipid-soluble nutrient found mainly in vegetable oils and oilseeds. It is divided into eight homologous compounds; however, only α-tocopherol exhibits vitamin activity. Many advantages are related to these compounds, including cellular protection through antioxidant and anti-inflammatory activity, and improving lipid metabolism. Physiopathology of many diseases incepts with reduced antioxidant defense, characterized by an increased reactive oxygen species production and activation of transcription factors involved in inflammation, such as nuclear factor-kappa B (NF-κB), that can be linked to oxidative stress. Moreover, disorders of lipid metabolism can increase the risk of cardiovascular diseases. In addition, intestinal dysbiosis plays a vital role in developing chronic non-communicable diseases. In this regard, vitamin E can be considered to mitigate those disorders, but data still needs to be more conclusive. This narrative review aims to elucidate the mechanisms of action of vitamin E and if supplementation can be beneficial in a disease scenario regarding non-communicable diseases.
Collapse
Affiliation(s)
- Liana Trugilho
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Isis Barboza
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Maurilo Leite
- Division of Nephrology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, France
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Pang KL, Mai CW, Chin KY. Molecular Mechanism of Tocotrienol-Mediated Anticancer Properties: A Systematic Review of the Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response. Nutrients 2023; 15:1854. [PMID: 37111076 PMCID: PMC10145773 DOI: 10.3390/nu15081854] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Tocotrienol, a type of vitamin E, is well known for its anti-cancer and other biological activities. This systematic review aims to summarize the involvement of endoplasmic reticulum stress (ERS) and subsequent unfolded protein response (UPR) as the underlying molecular mechanisms for the anticancer properties of tocotrienol. METHOD A comprehensive literature search was performed in March 2023 using the PubMed, Scopus, Web of Science, and EMBASE databases. In vitro, in vivo, and human studies were considered. RESULT A total of 840 articles were retrieved during the initial search, and 11 articles that fit the selection criteria were included for qualitative analysis. The current mechanistic findings are based solely on in vitro studies. Tocotrienol induces cancer cell growth arrest, autophagy, and cell death primarily through apoptosis but also through paraptosis-like cell death. Tocotrienol-rich fractions, including α-, γ- and δ-tocotrienols, induce ERS, as evidenced by upregulation of UPR markers and/or ERS-related apoptosis markers. Early endoplasmic reticulum calcium ion release, increased ceramide level, proteasomal inhibition, and upregulation of microRNA-190b were suggested to be essential in modulating tocotrienol-mediated ERS/UPR transduction. Nevertheless, the upstream molecular mechanism of tocotrienol-induced ERS is largely unknown. CONCLUSION ERS and UPR are essential in modulating tocotrienol-mediated anti-cancer effects. Further investigation is needed to elucidate the upstream molecular mechanism of tocotrienol-mediated ERS.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
7
|
Iguchi N, Dönmez Mİ, Malykhina AP, Wilcox DT. Anti-fibrotic effect of tocotrienols for bladder dysfunction due to partial bladder outlet obstruction. Investig Clin Urol 2023; 64:189-196. [PMID: 36882179 PMCID: PMC9995959 DOI: 10.4111/icu.20220328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
PURPOSE To investigate potential beneficial effects of tocotrienols which have been suggested to inhibit hypoxia-inducible factor (HIF) pathway, on partial bladder outlet obstruction (PBOO)-induced bladder pathology. MATERIALS AND METHODS PBOO was surgically created in juvenile male mice. Sham-operated mice were used as controls. Animals received daily oral administration of either tocotrienols (T3) or soybean oil (SBO, vehicle) from day 0 to 13 post-surgery. Bladder function was examined in vivo by void spot assay. At 2 weeks post-surgery, the bladders were subjected to physiological evaluation of detrusor contractility in vitro using bladder strips, histology by H&E staining and collagen imaging, and gene expression analyses by quantitative PCR. RESULTS A significant increase in the number of small voids was observed after 1 week of PBOO compared to the control groups. At 2 weeks post-surgery, PBOO+SBO mice showed a further increase in the number of small voids, which was not observed in PBOO+T3 group. PBOO-induced decrease in detrusor contractility was similar between two treatments. PBOO induced bladder hypertrophy to the same degree in both SBO and T3 treatment groups, however, fibrosis in the bladder was significantly less prominent in the T3 group than the SBO group following PBOO (1.8- vs. 3.0-fold increase in collagen content compared to the control). Enhanced levels of HIF target genes in the bladders were observed in PBOO+SBO group, but not in PBOO+T3 group compared to the control. CONCLUSIONS Oral tocotrienol treatment reduced the progression of urinary frequency and bladder fibrosis by suppressing HIF pathways triggered by PBOO.
Collapse
Affiliation(s)
- Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - M İrfan Dönmez
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA.,Division of Pediatric Urology, Department of Urology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Duncan T Wilcox
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA.,Department of Pediatric Urology, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
8
|
Wong SK, Fikri NIA, Munesveran K, Hisham NSN, Lau SHJ, Chin KY, Fahami NAM, Saad QHM, Kamisah Y, Abdullah A, Masbah N, Ima-Nirwana S. Effects of tocotrienol on osteocyte-mediated phosphate metabolism in high-carbohydrate high-fat diet-induced osteoporotic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
9
|
Mohamad Hazir NS, Yahaya NHM, Zawawi MSF, Damanhuri HA, Mohamed N, Alias E. Changes in Metabolism and Mitochondrial Bioenergetics during Polyethylene-Induced Osteoclastogenesis. Int J Mol Sci 2022; 23:ijms23158331. [PMID: 35955464 PMCID: PMC9368566 DOI: 10.3390/ijms23158331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Changes in mitochondrial bioenergetics are believed to take place during osteoclastogenesis. This study aims to assess changes in mitochondrial bioenergetics and reactive oxygen species (ROS) levels during polyethylene (PE)-induced osteoclastogenesis in vitro. For this purpose, RAW264.7 cells were cultured for nine days and allowed to differentiate into osteoclasts in the presence of PE and RANKL. The total TRAP-positive cells, resorption activity, expression of osteoclast marker genes, ROS level, mitochondrial bioenergetics, glycolysis, and substrate utilization were measured. The effect of tocotrienols-rich fraction (TRF) treatment (50 ng/mL) on those parameters during PE-induced osteoclastogenesis was also studied. During PE-induced osteoclastogenesis, as depicted by an increase in TRAP-positive cells and gene expression of osteoclast-related markers, higher proton leak, higher extracellular acidification rate (ECAR), as well as higher levels of ROS and NADPH oxidases (NOXs) were observed in the differentiated cells. The oxidation level of some substrates in the differentiated group was higher than in other groups. TRF treatment significantly reduced the number of TRAP-positive osteoclasts, bone resorption activity, and ROS levels, as well as modulating the gene expression of antioxidant-related genes and mitochondrial function. In conclusion, changes in mitochondrial bioenergetics and substrate utilization were observed during PE-induced osteoclastogenesis, while TRF treatment modulated these changes.
Collapse
Affiliation(s)
- Nur Shukriyah Mohamad Hazir
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
- Clinical Laboratory Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedics, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Muhamad Syahrul Fitri Zawawi
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
- Correspondence: ; Tel.: +60-3-91459559
| |
Collapse
|
10
|
Lee SY, Park J, Jeong DI, Hwang C, Lee J, Lee K, Kim HJ, Cho HJ. Ferrocene and glucose oxidase-installed multifunctional hydrogel reactors for local cancer therapy. J Control Release 2022; 349:617-633. [PMID: 35868357 DOI: 10.1016/j.jconrel.2022.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
A hyaluronic acid (HA)-based one-pot hydrogel reactor with single syringe injection and immediate gelation was developed for starvation therapy (ST), chemodynamic therapy (CDT), ferroptosis, and photothermal therapy (PTT) against breast cancer. A rheologically tuned hydrogel network, composed of HA-phenylboronic acid (HP) and HA-dopamine (HD), was designed by introducing a boronate ester linkage (phenylboronic acid-dopamine interaction) and polydopamine bond (pH control). Ferrocene (Fc)-conjugated HP (Fc-HP) was synthesized to achieve ferroptosis, Fenton reaction-involved toxic hydroxyl radical (•OH) generation, and photothermal ablation in cancer therapy. Glucose oxidase (GOx) was entrapped in the pH-modulated Fc-HP (Fc-HP°)/HD hydrogel network for converting intracellular glucose to H2O2 to enable its own supply. The GOx/Fc combination-installed hydrogel reactor system can provide sustained ST/CDT/PTT functions along with ferroptosis. Injection of Fc-HP°/HD/GOx hydrogel with single-syringe injectability, shear-thinning feature, and self-healing capability offered a slow biodegradation rate and high safety profiles. Peritumorally injected Fc-HP°/HD/GOx hydrogel also efficiently suppressed the growth of breast cancer based on multifunctional therapeutic approaches with reduced dosing frequency. Hyperthermia induced by near-infrared (NIR) laser absorption may amplify the therapeutic effects of free radicals. It is expected that this Fc-HP°/HD/GOx hydrogel system can be applied to local cancer therapy with high efficacy and safety profiles.
Collapse
Affiliation(s)
- Song Yi Lee
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - JiHye Park
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - ChaeRim Hwang
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
11
|
Naomi R, Shafie NH, Kaniappan P, Bahari H. An Interactive Review on the Role of Tocotrienols in the Neurodegenerative Disorders. Front Nutr 2021; 8:754086. [PMID: 34765631 PMCID: PMC8576197 DOI: 10.3389/fnut.2021.754086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders, such as Parkinson's and Alzheimer's disease, are claimed to be of major concern causing a significant disease burden worldwide. Oxidative stress, mitochondrial dysfunction and nerve damage are the main reasons for the emergence of these diseases. The formation of reactive oxygen species (ROS) is the common chemical molecule that is formed from all these three interdependent mechanisms which is highly reactive toward the neuronal cells. For these reasons, the administration of tocotrienols (T3s), which is a potent antioxidant, is proven to cater to this problem, through in vitro and in vivo investigations. Interestingly, their therapeutic potentials are not only limited to antioxidant property but also to being able to reverse the neuronal damage and act as a shield for mitochondria dysfunction. Thereby, T3s prevents the damage to the neurons. In regards to this statement, in this review, we focused on summarizing and discussing the potential therapeutic role of T3s on Alzheimer's and Parkinson's diseases, and their protective mechanisms based on evidence from the in vitro and in vivo studies. However, there is no clinical trial conducted to prove the efficacy of T3s for Alzheimer's and Parkinson's subjects. As such, the therapeutic role of T3s for these neurodegenerative disorders is still under debate.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurul Husna Shafie
- Department of Nutrition, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Priyatharisni Kaniappan
- Department of Medical Microbiology & Parasitology, Faculty of Medicine & Health Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
12
|
Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res 2021; 9:41. [PMID: 34508069 PMCID: PMC8433460 DOI: 10.1038/s41413-021-00164-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging insights into cellular senescence highlight the relevance of senescence in musculoskeletal disorders, which represent the leading global cause of disability. Cellular senescence was initially described by Hayflick et al. in 1961 as an irreversible nondividing state in in vitro cell culture studies. We now know that cellular senescence can occur in vivo in response to various stressors as a heterogeneous and tissue-specific cell state with a secretome phenotype acquired after the initial growth arrest. In the past two decades, compelling evidence from preclinical models and human data show an accumulation of senescent cells in many components of the musculoskeletal system. Cellular senescence is therefore a defining feature of age-related musculoskeletal disorders, and targeted elimination of these cells has emerged recently as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration of the skeleton and skeletal muscles. In this review, we summarize evidence of the role of senescent cells in the maintenance of bone homeostasis during childhood and their contribution to the pathogenesis of chronic musculoskeletal disorders, including osteoporosis, osteoarthritis, and sarcopenia. We highlight the diversity of the senescent cells in the microenvironment of bone, joint, and skeletal muscle tissue, as well as the mechanisms by which these senescent cells are involved in musculoskeletal diseases. In addition, we discuss how identifying and targeting senescent cells might positively affect pathologic progression and musculoskeletal system regeneration.
Collapse
|
13
|
Atia A, Alrawaiq NS, Abdullah A. Tocotrienols Activate Nrf2 Nuclear Translocation and Increase the Antioxidant- Related Hepatoprotective Mechanism in Mice Liver. Curr Pharm Biotechnol 2021; 22:1085-1098. [PMID: 32988349 DOI: 10.2174/1389201021666200928095950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/26/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The most common preparation of tocotrienols is the Tocotrienol-Rich Fraction (TRF). This study aimed to investigate whether TRF induced liver Nrf2 nuclear translocation and influenced the expression of Nrf2-regulated genes. METHODS In the Nrf2 induction study, mice were divided into control, 2000 mg/kg TRF and diethyl maleate treated groups. After acute treatment, mice were sacrificed at specific time points. Liver nuclear extracts were prepared and Nrf2 nuclear translocation was detected through Western blotting. To determine the effect of increasing doses of TRF on the extent of liver nuclear Nrf2 translocation and its implication on the expression levels of several Nrf2-regulated genes, mice were divided into 5 groups (control, 200, 500 and 1000 mg/kg TRF, and butylated hydroxyanisole-treated groups). After 14 days, mice were sacrificed and liver RNA was extracted for qPCR assay. RESULTS 2000 mg/kg TRF administration initiated Nrf2 nuclear translocation within 30 min, reached a maximum level of around 1 h and dropped to half-maximal levels by 24 h. Incremental doses of TRF resulted in dose-dependent increases in liver Nrf2 nuclear levels, along with concomitant dosedependent increases in the expressions of Nrf2-regulated genes. CONCLUSION TRF activated the liver Nrf2 pathway resulting in increased expression of Nrf2-regulated cytoprotective genes.
Collapse
Affiliation(s)
- Ahmed Atia
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nadia S Alrawaiq
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Azman Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Regmi S, Raut PK, Pathak S, Shrestha P, Park PH, Jeong JH. Enhanced viability and function of mesenchymal stromal cell spheroids is mediated via autophagy induction. Autophagy 2020; 17:2991-3010. [PMID: 33206581 DOI: 10.1080/15548627.2020.1850608] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have received attention as promising therapeutic agents for the treatment of various diseases. However, poor post-transplantation viability is a major hurdle in MSC-based therapy, despite encouraging results in many inflammatory disorders. Recently, three dimensional (3D)-cultured MSCs (MSC3D) were shown to have higher cell survival and enhanced anti-inflammatory effects, although the underlying mechanisms have not yet been elucidated. In this study, we investigated the molecular mechanisms by which MSC3D gain the potential for enhanced cell viability. Herein, we found that macroautophagy/autophagy was highly induced and ROS production was suppressed in MSC3D as compared to 2D-cultured MSCs (MSC2D). Interestingly, inhibition of autophagy induction caused decreased cell viability and increased apoptotic activity in MSC3D. Furthermore, modulation of ROS production was closely related to the survival and apoptosis of MSC3D. We also observed that HMOX1 (heme oxygenase 1) was significantly up-regulated in MSC3D. In addition, gene silencing of HMOX1 caused upregulation of ROS production and suppression of the genes related to autophagy. Moreover, inhibition of HIF1A (hypoxia inducible factor 1 subunit alpha) caused suppression of HMOX1 expression in MSC3D, indicating that the HIF1A-HMOX1 axis plays a crucial role in the modulation of ROS production and autophagy induction in MSC3D. Finally, the critical role of autophagy induction on improved therapeutic effects of MSC3D was further verified in dextran sulfate sodium (DSS)-induced murine colitis. Taken together, these results indicated that autophagy activation and modulation of ROS production mediated via the HIF1A-HMOX1 axis play pivotal roles in enhancing the viability of MSC3D.List of abbreviations:3D: three dimensional; 3MA: 3 methlyadenine; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CFSE: carboxyfluorescein succinimidyl ester; CoCl2: cobalt chloride; CoPP: cobalt protoporphyrin; DSS: dextran sulfate sodium; ECM: extracellular matrix; FOXO3/FOXO3A: forkhead box O3; HIF1A: hypoxia inducible factor 1 subunit alpha; HMOX1/HO-1: heme oxygenase 1; HSCs: hematopoietic stem cells; IL1A/IL-1α: interleukin 1 alpha; IL1B/IL-1β: interleukin 1 beta; IL8: interleukin 8; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; MSC2D: 2D-cultured MSCs; MSC3D: 3D-cultured MSCs; MSCs: mesenchymal stromal cells; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; PGE2: prostaglandin E2; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; ROS: reactive oxygen species; siRNA: small interfering RNA; SIRT1: sirtuin 1; SOD2: superoxide dismutase 2; SQSTM1/p62: sequestosome 1; TGFB/TGF-β: transforming growth factor beta.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Department of Radiology, Stanford Medicine, Palo Alto, CA, USA
| | - Pawan Kumar Raut
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Prakash Shrestha
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| |
Collapse
|
15
|
Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Makpol S, Wan Ngah WZ, Damanhuri HA, Tooyama I. Modulation of Proteome Profile in AβPP/PS1 Mice Hippocampus, Medial Prefrontal Cortex, and Striatum by Palm Oil Derived Tocotrienol-Rich Fraction. J Alzheimers Dis 2020; 72:229-246. [PMID: 31594216 PMCID: PMC6839455 DOI: 10.3233/jad-181171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tocotrienol-rich fraction (TRF) is a mixture of vitamin E analogs derived from palm oil. We previously demonstrated that supplementation with TRF improved cognitive function and modulated amyloid pathology in AβPP/PS1 mice brains. The current study was designed to examine proteomic profiles underlying the therapeutic effect of TRF in the brain. Proteomic analyses were performed on samples of hippocampus, medial prefrontal cortex (mPFC), and striatum using liquid chromatography coupled to Q Exactive HF Orbitrap mass spectrometry. From these analyses, we profiled a total of 5,847 proteins of which 155 proteins were differentially expressed between AβPP/PS1 and wild-type mice. TRF supplementation of these mice altered the expression of 255 proteins in the hippocampus, mPFC, and striatum. TRF also negatively modulated the expression of amyloid beta A4 protein and receptor-type tyrosine-protein phosphatase alpha protein in the hippocampus. The expression of proteins in metabolic pathways, oxidative phosphorylation, and those involved in Alzheimer’s disease were altered in the brains of AβPP/PS1 mice that received TRF supplementation.
Collapse
Affiliation(s)
- Hamizah Shahirah Hamezah
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Nor Faeizah Ibrahim
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| |
Collapse
|
16
|
Tousian H, Razavi BM, Hosseinzadeh H. Looking for immortality: Review of phytotherapy for stem cell senescence. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:154-166. [PMID: 32405357 PMCID: PMC7211350 DOI: 10.22038/ijbms.2019.40223.9522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, we discussed natural agents with protective effects against stem cell senescence. Different complications have been observed due to stem cell senescence and the most important of them is "Aging". Senescent cells have not normal function and their secretary inflammatory factors induce chronic inflammation in body which causes different pathologies. Stem cell senescence also has been investigated in different diseases or as drug adverse effects. We searched databases such as Embase, Pubmed and Web of Science with keywords "stem cell", "progenitor cell", "satellite", "senescence" and excluded keywords "cancer", "tumor", "malignancy" and "carcinoma" without time limitation until May 2019. Among them we chose 52 articles that have investigated protective effects of natural agents (extracts or molecules) against cellular senescence in different kind of adult stem cells. Most of these studies were in endothelial progenitor cells, hematopoietic stem cells, mesenchymal stem cells, adipose-derived stem cells and few were about other kinds of stem cells. Most studied agents were resveratrol and ginseng which are also commercially available as supplement. Most protective molecular targets were telomerase and anti-oxidant enzymes to preserve genome integrity and reduce senescence-inducing signals. Due to the safe and long history of herbal usage in clinic, phytotherapy can be used for preventing stem cell senescence and their related complication. Resveratrol and ginseng can be the first choice for this aim due to their protective mechanisms in various kinds of stem cells and their long term clinical usage.
Collapse
Affiliation(s)
- Hourieh Tousian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Changes in Redox Signaling in the Skeletal Muscle with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4617801. [PMID: 30800208 PMCID: PMC6360032 DOI: 10.1155/2019/4617801] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
Abstract
Reduction in muscle strength with aging is due to both loss of muscle mass (quantity) and intrinsic force production (quality). Along with decreased functional capacity of the muscle, age-related muscle loss is associated with corresponding comorbidities and healthcare costs. Mitochondrial dysfunction and increased oxidative stress are the central driving forces for age-related skeletal muscle abnormalities. The increased oxidative stress in the aged muscle can lead to altered excitation-contraction coupling and calcium homeostasis. Furthermore, apoptosis-mediated fiber loss, atrophy of the remaining fibers, dysfunction of the satellite cells (muscle stem cells), and concomitant impaired muscle regeneration are also the consequences of increased oxidative stress, leading to a decrease in muscle mass, strength, and function of the aged muscle. Here we summarize the possible effects of oxidative stress in the aged muscle and the benefits of physical activity and antioxidant therapy.
Collapse
|
18
|
Tocotrienol-Rich Fraction (TRF) Treatment Promotes Proliferation Capacity of Stress-Induced Premature Senescence Myoblasts and Modulates the Renewal of Satellite Cells: Microarray Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9141343. [PMID: 30774750 PMCID: PMC6350575 DOI: 10.1155/2019/9141343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Human skeletal muscle is a vital organ involved in movement and force generation. It suffers from deterioration in mass, strength, and regenerative capacity in sarcopenia. Skeletal muscle satellite cells are involved in the regeneration process in response to muscle loss. Tocotrienol, an isomer of vitamin E, was reported to have a protective effect on cellular aging. This research is aimed at determining the modulation of tocotrienol-rich fraction (TRF) on the gene expressions of stress-induced premature senescence (SIPS) human skeletal muscle myoblasts (CHQ5B). CHQ5B cells were divided into three groups, i.e., untreated young control, SIPS control (treated with 1 mM hydrogen peroxide), and TRF-posttreated groups (24 hours of 50 μg/mL TRF treatment after SIPS induction). The differential gene expressions were assessed using microarray, GSEA, and KEGG pathway analysis. Results showed that TRF treatment significantly regulated the gene expressions, i.e., p53 (RRM2B, SESN1), ErbB (EREG, SHC1, and SHC3), and FoxO (MSTN, SMAD3) signalling pathways in the SIPS myoblasts compared to the SIPS control group (p < 0.05). TRF treatment modulated the proliferation capacity of SIPS myoblasts through regulation of ErbB (upregulation of expression of EREG, SHC1, and SHC3) and FoxO (downregulation of expression of MSTN and SMAD3) and maintaining the renewal of satellite cells through p53 signalling (upregulation of RRM2B and SESN1), MRF, cell cycle, and Wnt signalling pathways.
Collapse
|
19
|
Razak AM, Khor SC, Jaafar F, Karim NA, Makpol S. Targeting myomiRs by tocotrienol-rich fraction to promote myoblast differentiation. GENES AND NUTRITION 2018; 13:31. [PMID: 30519366 PMCID: PMC6267085 DOI: 10.1186/s12263-018-0618-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/05/2018] [Indexed: 11/10/2022]
Abstract
Background Several muscle-specific microRNAs (myomiRs) are differentially expressed during cellular senescence. However, the role of dietary compounds on myomiRs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF) on myomiRs and myogenic genes during differentiation of human myoblasts. Young and senescent human skeletal muscle myoblasts (HSMM) were treated with 50 μg/mL TRF for 24 h before and after inducing differentiation. Results The fusion index and myotube surface area were higher (p < 0.05) on days 3 and 5 than that on day 1 of differentiation. Ageing reduced the differentiation rate, as observed by a decrease in both fusion index and myotube surface area in senescent cells (p < 0.05). Treatment with TRF significantly increased differentiation at days 1, 3 and 5 of young and senescent myoblasts. In senescent myoblasts, TRF increased the expression of miR-206 and miR-486 and decreased PTEN and PAX7 expression. However, the expression of IGF1R was upregulated during early differentiation and decreased at late differentiation when treated with TRF. In young myoblasts, TRF promoted differentiation by modulating the expression of miR-206, which resulted in the reduction of PAX7 expression and upregulation of IGF1R. Conclusion TRF can potentially promote myoblast differentiation by modulating the expression of myomiRs, which regulate the expression of myogenic genes.
Collapse
Affiliation(s)
- Azraul Mumtazah Razak
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Shy Cian Khor
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Faizul Jaafar
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Norwahidah Abdul Karim
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Malavolta M, Pierpaoli E, Giacconi R, Basso A, Cardelli M, Piacenza F, Provinciali M. Anti-inflammatory Activity of Tocotrienols in Age-related Pathologies: A SASPected Involvement of Cellular Senescence. Biol Proced Online 2018; 20:22. [PMID: 30479579 PMCID: PMC6247629 DOI: 10.1186/s12575-018-0087-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022] Open
Abstract
Tocotrienols (T3) have been shown to represent a very important part of the vitamin E family since they have opened new opportunities to prevent or treat a multitude of age-related chronic diseases. The beneficial effects of T3 include the amelioration of lipid profile, the promotion of Nrf2 mediated cytoprotective activity and the suppression of inflammation. All these effects may be the consequence of the ability of T3 to target multiple pathways. We here propose that these effects may be the result of a single target of T3, namely senescent cells. Indeed, T3 may act by a direct suppression of the senescence-associated secretory phenotype (SASP) produced by senescent cells, mediated by inhibition of NF-kB and mTOR, or may potentially remove the origin of the SASP trough senolysis (selective death of senescent cells). Further studies addressed to investigate the impact of T3 on cellular senescence “in vitro” as well as in experimental models of age-related diseases “in vivo” are clearly encouraged.
Collapse
Affiliation(s)
- Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Andrea Basso
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| |
Collapse
|
21
|
Lee H, Lim Y. Tocotrienol-rich fraction supplementation reduces hyperglycemia-induced skeletal muscle damage through regulation of insulin signaling and oxidative stress in type 2 diabetic mice. J Nutr Biochem 2018; 57:77-85. [DOI: 10.1016/j.jnutbio.2018.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
|
22
|
Nor Azman NHE, Goon JA, Abdul Ghani SM, Hamid Z, Wan Ngah WZ. Comparing Palm Oil, Tocotrienol-Rich Fraction and α-Tocopherol Supplementation on the Antioxidant Levels of Older Adults. Antioxidants (Basel) 2018; 7:E74. [PMID: 29843393 PMCID: PMC6025588 DOI: 10.3390/antiox7060074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tocotrienol and tocopherol are known to prevent numerous degenerative diseases. The aim of this study is to compare the effects of tocotrienol-rich fraction (TRF) with α-tocopherol (α-TF) on the antioxidant status of healthy individuals aged between 50 and 55 years. METHODS Volunteers were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24). Fasting venous blood samples were taken at baseline (0 month), 3 months and 6 months of supplementation for the determination of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities as well as for reduced glutathione (GSH) and oxidized glutathione (GSSG) concentrations. RESULTS CAT and GPx were unaffected by TRF and α-TF supplementations. SOD activity increased significantly after six months of TRF supplementation. Analysis by gender showed that only female subjects had significant increases in SOD and GPx activities after six months of TRF supplementation. GPx activity was also significantly higher in females compared to males after six months of TRF supplementation. The GSH/GSSG ratio increased significantly after six months of TRF and α-TF supplementation in only the female subjects. CONCLUSION TRF and α-TF supplementation exhibited similar effects to the antioxidant levels of older adults with TRF having more significant effects in females.
Collapse
Affiliation(s)
- Nor Helwa Ezzah Nor Azman
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia.
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia.
| | - Siti Madiani Abdul Ghani
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia.
| | - Zalina Hamid
- Sime Darby Foods and Beverages Marketing Sdn. Bhd, 47301 Petaling Jaya, Selangor, Malaysia.
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Muripiti V, Brijesh L, Rachamalla HK, Marepally SK, Banerjee R, Patri SV. α-Tocopherol-ascorbic acid hybrid antioxidant based cationic amphiphile for gene delivery: Design, synthesis and transfection. Bioorg Chem 2018; 82:178-191. [PMID: 30326400 DOI: 10.1016/j.bioorg.2018.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Natural antioxidants and vitamins have potential to protect biological systems from peroxidative damage induced by peroxyl radicals, α-tocopherol (Vitamin E, lipid soluble) and ascorbic acid (vitamin C, water soluble), well known natural antioxidant molecules. In the present study we described the synthesis and biological evaluation of hybrid of these two natural antioxidants with each other via ammonium di-ethylether linker, Toc-As in gene delivery. Two control cationic lipids N14-As and Toc-NOH are designed in such a way that one is with ascorbic acid moiety and no tocopherol moiety; another is with tocopherol moiety and no ascorbic acid moiety respectively. All the three cationic lipids can form self-assembled aggregates. The antioxidant efficiencies of the three lipids were compared with free ascorbic acid. The cationic lipids (Toc-As, N14-As and Toc-NOH) were formulated individually with a well-known fusogenic co-lipid DOPE and characterization studies such as DNA binding, heparin displacement, size, charge, circular dichroism were performed. The biological characterization studies such as cell viability assay and in vitro transfection studies were carried out with the above formulations in HepG2, Neuro-2a, CHO andHEK-293T cell lines. The three formulations showed their transfection efficiencies with highest in Toc-As, moderate inN14-As and least in Toc-NOH. Interestingly, the transfection efficiency observed with the antioxidant based conjugated lipid Toc-As is found to be approximately two and half fold higher than the commercially available lipofectamine 2000 at 4:1 charge ratio in Hep G2 cell lines. In the other cell lines studied the efficiency of Toc-As is found to be either higher or similarly active compared to lipofectamine 2000. The physicochemical characterization results show that Toc-As lipid is showing maximum antioxidant potency, strong binding with pDNA, least size and optimal zeta potential. It is also found to be least toxic in all the cell lines studied especially in Neuro-2a cell lines when compared to other two lipids. In summary, the designed antioxidant lipid can be exploited as a delivering system for treating ROS related diseases such as malignancy, brain stroke, etc.
Collapse
Affiliation(s)
| | | | - Hari Krishnareddy Rachamalla
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500607, Telangana, India
| | | | - Rajkumar Banerjee
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500607, Telangana, India
| | | |
Collapse
|