1
|
Lindroth H, Nalaie K, Raghu R, Ayala IN, Busch C, Bhattacharyya A, Moreno Franco P, Diedrich DA, Pickering BW, Herasevich V. Applied Artificial Intelligence in Healthcare: A Review of Computer Vision Technology Application in Hospital Settings. J Imaging 2024; 10:81. [PMID: 38667979 PMCID: PMC11050909 DOI: 10.3390/jimaging10040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Computer vision (CV), a type of artificial intelligence (AI) that uses digital videos or a sequence of images to recognize content, has been used extensively across industries in recent years. However, in the healthcare industry, its applications are limited by factors like privacy, safety, and ethical concerns. Despite this, CV has the potential to improve patient monitoring, and system efficiencies, while reducing workload. In contrast to previous reviews, we focus on the end-user applications of CV. First, we briefly review and categorize CV applications in other industries (job enhancement, surveillance and monitoring, automation, and augmented reality). We then review the developments of CV in the hospital setting, outpatient, and community settings. The recent advances in monitoring delirium, pain and sedation, patient deterioration, mechanical ventilation, mobility, patient safety, surgical applications, quantification of workload in the hospital, and monitoring for patient events outside the hospital are highlighted. To identify opportunities for future applications, we also completed journey mapping at different system levels. Lastly, we discuss the privacy, safety, and ethical considerations associated with CV and outline processes in algorithm development and testing that limit CV expansion in healthcare. This comprehensive review highlights CV applications and ideas for its expanded use in healthcare.
Collapse
Affiliation(s)
- Heidi Lindroth
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
- Center for Aging Research, Regenstrief Institute, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Health Innovation and Implementation Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Keivan Nalaie
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.D.); (B.W.P.); (V.H.)
| | - Roshini Raghu
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
| | - Ivan N. Ayala
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
| | - Charles Busch
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Pablo Moreno Franco
- Department of Transplantation Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Daniel A. Diedrich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.D.); (B.W.P.); (V.H.)
| | - Brian W. Pickering
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.D.); (B.W.P.); (V.H.)
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.D.); (B.W.P.); (V.H.)
| |
Collapse
|
2
|
Lonsdale H, Gray GM, Ahumada LM, Matava CT. Machine Vision and Image Analysis in Anesthesia: Narrative Review and Future Prospects. Anesth Analg 2023; 137:830-840. [PMID: 37712476 PMCID: PMC11495405 DOI: 10.1213/ane.0000000000006679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Machine vision describes the use of artificial intelligence to interpret, analyze, and derive predictions from image or video data. Machine vision-based techniques are already in clinical use in radiology, ophthalmology, and dermatology, where some applications currently equal or exceed the performance of specialty physicians in areas of image interpretation. While machine vision in anesthesia has many potential applications, its development remains in its infancy in our specialty. Early research for machine vision in anesthesia has focused on automated recognition of anatomical structures during ultrasound-guided regional anesthesia or line insertion; recognition of the glottic opening and vocal cords during video laryngoscopy; prediction of the difficult airway using facial images; and clinical alerts for endobronchial intubation detected on chest radiograph. Current machine vision applications measuring the distance between endotracheal tube tip and carina have demonstrated noninferior performance compared to board-certified physicians. The performance and potential uses of machine vision for anesthesia will only grow with the advancement of underlying machine vision algorithm technical performance developed outside of medicine, such as convolutional neural networks and transfer learning. This article summarizes recently published works of interest, provides a brief overview of techniques used to create machine vision applications, explains frequently used terms, and discusses challenges the specialty will encounter as we embrace the advantages that this technology may bring to future clinical practice and patient care. As machine vision emerges onto the clinical stage, it is critically important that anesthesiologists are prepared to confidently assess which of these devices are safe, appropriate, and bring added value to patient care.
Collapse
Affiliation(s)
- Hannah Lonsdale
- Department of Anesthesiology, Division of Pediatric Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Geoffrey M. Gray
- Center for Pediatric Data Science and Analytics Methodology, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Luis M. Ahumada
- Center for Pediatric Data Science and Analytics Methodology, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Clyde T. Matava
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Kavitha T, Mathai PP, Karthikeyan C, Ashok M, Kohar R, Avanija J, Neelakandan S. Deep Learning Based Capsule Neural Network Model for Breast Cancer Diagnosis Using Mammogram Images. Interdiscip Sci 2021; 14:113-129. [PMID: 34338956 DOI: 10.1007/s12539-021-00467-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is a commonly occurring disease in women all over the world. Mammogram is an efficient technique used for screening and identification of abnormalities over the breast region. Earlier identification of breast cancer enhances the prognosis of patients and is mainly based on the experience of the radiologist in interpretation of mammogram with quality of image. The advent of Deep Learning (DL) and Computer Vision techniques is widely used to perform breast cancer diagnosis. This paper presents a new Optimal Multi-Level Thresholding-based Segmentation with DL enabled Capsule Network (OMLTS-DLCN) breast cancer diagnosis model utilizing digital mammograms. The OMLTS-DLCN model involves an Adaptive Fuzzy based median filtering (AFF) technique as a pre-processing step to eradicate the noise that exists in the mammogram images. Besides, Optimal Kapur's based Multilevel Thresholding with Shell Game Optimization (SGO) algorithm (OKMT-SGO) is applied for breast cancer segmentation. In addition, the proposed model involves a CapsNet based feature extractor and Back-Propagation Neural Network (BPNN) classification model is employed to detect the existence of breast cancer. The diagnostic outcomes of the presented OMLTS-DLCN technique is examined by means of benchmark Mini-MIAS dataset and DDSM dataset. The experimental values obtained highlights the superior performance of the OMLTS-DLCN model with a higher accuracy of 98.50 and 97.55% on the Mini-MIAS dataset and DDSM dataset, respectively.
Collapse
Affiliation(s)
- T Kavitha
- Department of Computer Applications, Kongu Engineering College, Perundurai, Erode, India
| | - Paul P Mathai
- Department of CSE, Federal Institute of Science and Technology (FISAT), Angamaly, Ernakulam, Kerala, India
| | - C Karthikeyan
- Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - M Ashok
- Department of CSE, Rajalakshmi Institute of Technology, Chennai, India
| | - Rachna Kohar
- School of CSE, Lovely Professional University, Punjab, 144411, India
| | - J Avanija
- Department of CSE, Sree Vidyanikethan Engineering College, Tirupati, India
| | - S Neelakandan
- Department of IT, Jeppiaar Institute of Technology, Sriperumbudur, India.
| |
Collapse
|
5
|
Bania RK, Halder A. R-Ensembler: A greedy rough set based ensemble attribute selection algorithm with kNN imputation for classification of medical data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105122. [PMID: 31622857 DOI: 10.1016/j.cmpb.2019.105122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND OBJECTIVE Retrieving meaningful information from high dimensional dataset is an important and challenging task. Normally, medical dataset suffers from several issues such as curse of dimensionality problem, uncertainty, presence of missing values, non-relevant and redundant attributes, etc. Any machine learning technique applied on such data (without any preprocessing) by and large takes a considerable amount of computational time and may degrade the performance of the model. METHODS In this article, R-Ensembler, a parameter free greedy ensemble attribute selection method is proposed adopting the concept of rough set theory by using the attribute-class, attribute-significance and attribute-attribute relevance measures to select a subset of attributes which are most relevant, significant and non-redundant from a pool of different attribute subsets in order to predict the presence or absence of different diseases in medical dataset. The main role of the proposed ensembler is to combine multiple subsets of attributes produced by different rough set filters and to produce an optimal subset of attributes for subsequent classification task. A novel n number of set intersection method is also proposed to reduce the biasness during the time of attribute selection process. Before selecting the minimal attribute set from a given data by the proposed R-Ensembler method, the dataset is preprocessed by the k nearest neighbour (kNN) imputation method for missing value treatment. RESULTS Experiments are carried out on seven benchmark medical datasets collected from University of California at Irvine (UCI) repository. The performance of the proposed ensemble method is compared with five state-of-the-art attribute selection algorithms, results of which are measured using three benchmark classifiers viz., Naïve Bayes, decision trees and random forest. Experimental results clearly justify the superiority of the proposed R-Ensembler method over other attribute selection algorithms. Results of paired t-test performed on average accuracies produced by different classifiers simulated on the reduced data sets achieved by the proposed and counter part attribute selection methods confirm the statistical significance of the better reduced attribute subsets achieved by the proposed R-Ensembler method compared to others. CONCLUSION The proposed ensemble method turned out to be very effective for selecting high relevant, high significant and less redundant attributes from a pool of different subsets of attributes.
Collapse
Affiliation(s)
- Rubul Kumar Bania
- Dept. of Computer Application, North-Eastern Hill University Tura Campus, Tura, Meghalaya 794002, India.
| | - Anindya Halder
- Dept. of Computer Application, North-Eastern Hill University Tura Campus, Tura, Meghalaya 794002, India.
| |
Collapse
|