1
|
Demyashkin G, Vadyukhin M, Murtazalieva Z, Pugacheva E, Schekin V, Bimurzaeva M, Pesegova S, Shegay P, Kaprin A. Novel Molecular Mechanisms Underlying the Ameliorative Effect of Platelet-Rich Plasma against Electron Radiation-Induced Premature Ovarian Failure. Int J Mol Sci 2024; 25:10115. [PMID: 39337598 PMCID: PMC11432445 DOI: 10.3390/ijms251810115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Radiotherapy is one of the risk factors for radiation-induced premature ovarian failure and infertility in cancer patients. The development of methods for ovarian radioprotection remains relevant. Moreover, electrons are a little-studied and promising method of radiation with the least toxic effect on normal tissues. The assessment of intracellular mechanisms regulating the protective effects of leukocyte-poor platelet-rich plasma in a model of radiation-induced premature ovarian failure caused by electron irradiation. Wistar rats were divided into four groups, namely a control group, irradiation group (electron exposure), irradiation + leukocyte-poor platelet-rich plasma group, and only leukocyte-poor platelet-rich plasma group. Fragments of ovaries were removed and hormonal, oxidant, histological, and morphometric studies were carried out. The cell cycle of ovarian follicles and the inflammatory and vascular response were assessed using immunohistochemistry. The activity of MAPK, ERK, and PI3K pathways was also assessed using the RT-qPCR. We found that electron irradiation causes a decrease in the functional activity of the ovaries and the death of follicular cells through apoptosis. The administration of LP-PRP led to a partial restoration of the cytokine balance. In addition, minor ovarian damage and mild inflammation were observed in this group. Leukocyte-poor platelet-rich plasma components have anti-inflammatory, angiogenetic, and radioprotective effects, reducing the activation of the NOX4, caspase and cytokine cascades, and inflammatory response severity through the MAPK/p38/JNK signaling pathway. This leads to the induction of endogenous antioxidant protection, the repair of post-radiation follicular damage, and slowing down the development of radiation-induced premature ovarian failure after electron irradiation.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Matvey Vadyukhin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Zaira Murtazalieva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Ekaterina Pugacheva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Vladimir Schekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia (RUDN University), Miklouho-Maclay St., 6, 117198 Moscow, Russia
| | - Makka Bimurzaeva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Svetlana Pesegova
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia (RUDN University), Miklouho-Maclay St., 6, 117198 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrey Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia (RUDN University), Miklouho-Maclay St., 6, 117198 Moscow, Russia
| |
Collapse
|
2
|
Cai J, Li Y, Zhao B, Bao Z, Li J, Sun S, Chen Y, Wu X. N-Acetylcysteine Alleviates D-Galactose-Induced Injury of Ovarian Granulosa Cells in Female Rabbits by Regulating the PI3K/Akt/mTOR Signaling Pathway. Antioxidants (Basel) 2024; 13:384. [PMID: 38671832 PMCID: PMC11047383 DOI: 10.3390/antiox13040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The ovary plays a crucial role in the reproductive system of female animals. Ovarian problems such as ovarian insufficiency, premature aging, polycystic ovary syndrome, and ovarian cysts may lead to ovulation disorders, abnormal hormone secretion, or luteal dysfunction, thereby increasing the risk of infertility and abortion. Only when the ovarian function and other organs in the reproductive system remain healthy and work normally can female animals be ensured to carry out reproductive activities regularly, improve the pregnancy rate and litter size, promote the healthy development of the fetus, and then improve their economic value. The follicle, as the functional unit of the ovary, is composed of theca cells, granulosa cells (GCs), and oocytes. GCs are the largest cell population and main functional unit in follicles and provide the necessary nutrients for the growth and development of follicles. N-acetylcysteine (NAC) is a prevalent and cell-permeable antioxidant molecule that effectively prevents apoptosis and promotes cellular survival. Over the past few years, its function in boosting reproductive performance in animals at the cellular level has been widely acknowledged. However, its specific role and mechanism in influencing GCs is yet to be fully understood. The objective of this study was to examine the effects of NAC on ovarian damage in female rabbits. For this purpose, D-galactose (D-gal) was first used to establish a model of damaged GCs, with exposure to 1.5 mg/mL of D-gal leading to substantial damage. Subsequently, varying concentrations of NAC were introduced to determine the precise mechanism through which it influences cell damage. Based on the results of the Cell Counting Kit-8 assay, flow cytometry, and Western blotting, it was found that 0.5 mg/mL of NAC could significantly suppress cell apoptosis and promote proliferation. In particular, it decreased the expression levels of Bax, p53, and Caspase-9 genes, while concurrently upregulating the expression of the BCL-2 gene. Moreover, NAC was found to alleviate intracellular oxidative stress, suppress the discharge of mitochondrial Cytochrome c, and boost the enzymatic activities of CAT (Catalase), GSH (Glutathione), and SOD (Superoxide dismutase). RNA sequencing analysis subsequently underscored the critical role of the PI3K/Akt/mTOR pathway in governing proliferation and apoptosis within GCs. These findings demonstrated that NAC could significantly influence gene expression within this pathway, thereby clarifying the exact relationship between the PI3K/Akt/mTOR signaling cascade and the underlying cellular processes controlling proliferation and apoptosis. In conclusion, NAC can reduce the expression of Bax, p53, and Caspase-9 genes, inhibit the apoptosis of GCs, improve cell viability, and resist D-gal-induced oxidative stress by increasing the activity of CAT, GSH, and SOD. The molecular mechanism of NAC in alleviating D-gal-induced ovarian GC injury in female rabbits by regulating the PI3K/Akt/mTOR signaling pathway provides experimental evidence for the effect of NAC on animal reproductive function at the cellular level.
Collapse
Affiliation(s)
- Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.C.); (Y.L.); (B.Z.); (Z.B.); (J.L.); (S.S.)
| | - Yunpeng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.C.); (Y.L.); (B.Z.); (Z.B.); (J.L.); (S.S.)
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.C.); (Y.L.); (B.Z.); (Z.B.); (J.L.); (S.S.)
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.C.); (Y.L.); (B.Z.); (Z.B.); (J.L.); (S.S.)
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.C.); (Y.L.); (B.Z.); (Z.B.); (J.L.); (S.S.)
| | - Shaoning Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.C.); (Y.L.); (B.Z.); (Z.B.); (J.L.); (S.S.)
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.C.); (Y.L.); (B.Z.); (Z.B.); (J.L.); (S.S.)
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.C.); (Y.L.); (B.Z.); (Z.B.); (J.L.); (S.S.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Effects of N-Acetylcysteine on the Proliferation, Hormone Secretion Level, and Gene Expression Profiles of Goat Ovarian Granulosa Cells. Genes (Basel) 2022; 13:genes13122306. [PMID: 36553574 PMCID: PMC9778279 DOI: 10.3390/genes13122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
The purpose of this paper was to investigate the effects of N-acetylcysteine (NAC) on the proliferation, hormone secretion, and mRNA expression profiles of ovarian granulosa cells (GCs) in vitro. A total of 12 ovaries from 6 follicular-stage goats were collected for granulosa cell extraction. The optimum concentration of NAC addition was determined to be 200 μM via the Cell Counting Kit 8 (CCK-8) method. Next, GCs were cultured in a medium supplemented with 200 μM NAC (200 μM NAC group) and 0 μ M NAC (control group) for 48 h. The effects of 200 μM NAC on the proliferation of granulosa cells and hormones were studied by 5-ethynyl-2'-deoxyuridine (EdU) assay and enzyme-linked immunosorbent assay (ELISA). mRNA expression was analyzed by transcriptome sequencing. The results indicate that 200 μM NAC significantly increased cell viability and the proportion of cells in the S phase but promoted hormone secretion to a lesser degree. Overall, 122 differentially expressed genes (DEGs) were identified. A total of 51 upregulated and 71 downregulated genes were included. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that the most DEGs were enriched in terms of cell growth regulation, cell growth, neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, the cAMP-signaling pathway, and the Wnt-signaling pathway. Seven genes related to granulosa cell proliferation were screened, IGFBP4, HTRA4, SST, SSTR1, WISP1, DAAM2, and RSPO2. The above results provide molecular theoretical support for NAC as a feed additive to improve follicle development and improve reproductive performance in ewes.
Collapse
|
4
|
Fu K, Chen X, Guo W, Zhou Z, Zhang Y, Ji T, Yang P, Tian X, Wang W, Zou Y. Effects of N Acetylcysteine on the Expression of Genes Associated with Reproductive Performance in the Goat Uterus during Early Gestation. Animals (Basel) 2022; 12:2431. [PMID: 36139290 PMCID: PMC9495183 DOI: 10.3390/ani12182431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
N acetylcysteine (NAC) affects antioxidation and reactive oxygen species scavenging in the body and thereby promotes embryonic development and implantation and inhibits inflammation. The mechanism through which NAC regulates reproductive performance in the uteri of goats during early gestation remains unclear. In this study, the treatment group was fed 0.07% NAC for the first 35 days of gestation, whereas the control group received no NAC supplementation. The regulatory genes and key pathways associated with goat reproductive performance under NAC supplementation were identified by RNA-seq. RT-qPCR was used to verify the sequencing results and subsequently construct tissue expression profiles of the relevant genes. RNA-seq identified 19,796 genes coexpressed in the control and treatment groups and 1318 differentially expressed genes (DEGs), including 787 and 531 DEGs enriched in the treatment and control groups, respectively. A GO analysis revealed that the identified genes mapped to pathways such as cell activation, cytokine production, cell mitotic processes, and angiogenesis, and a KEGG enrichment analysis showed that the DEGs were enriched in pathways associated with reproductive regulation, immune regulation, resistance to oxidative stress, and cell adhesion. The RT-qPCR analysis showed that BDNF and CSF-1 were most highly expressed in the uterus, that WIF1 and ESR2 showed low expression in the uterus, and that CTSS, PTX3, and TGFβ-3 were most highly expressed in the oviduct, which indicated that these genes may be directly or indirectly involved in the modulation of reproduction in early-gestation goats. These findings provide fundamental data for the NAC-mediated modulation of the reproductive performance of goats during early gestation.
Collapse
Affiliation(s)
- Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhinan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Peifang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Rafiee B, Karbalay-doust S, Tabei SMB, Azarpira N, Alaee S, Lohrasbi P, Bahmanpour S. Effects of N-acetylcysteine and metformin treatment on the stereopathological characteristics of uterus and ovary. Eur J Transl Myol 2022; 32. [PMID: 35535444 PMCID: PMC9295164 DOI: 10.4081/ejtm.2022.10409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, the stereo-pathological effect of metformin and N-acetyl cysteine is evaluated on the uterus and ovary of polycystic ovary syndrome (PCOS) mice. 96 mature females (8-weekold, weight of 20–30 gr) BALB/c mice were classified into 6 groups including the control group (n= 16), letrozole-induced PCOS group (n=16), PCOS + metformin (n=16), PCOS+NAC (n=16) and a separate control group for NAC (n=16). Another PCOS group was maintained for a month to make sure that features remain till the end of the study. Testosterone level, vaginal cytology and stereological evaluations were assessed. Vaginal cytology in letrozole-receiving mice showed a diestrus phase continuity. Testosterone level, body weight, uterine weight, endometrial volume, myometrial volume, gland volume, stromal volume, epithelial volume, vessel volume, daughter and conglomerate glands, endometrial thickness, and myometrial thickness exhibited an increasing trend in the uterus of PCOS mice. While normal gland and vessel length decreased in the PCOS group. Ovarian volume, corticomedullary volume, primary follicles, secondary follicles, and ovarian cysts were increased in PCOS ovaries. While corpus luteum, primordial, graafian, and atretic follicles showed a decline in the PCOS group. NAC and metformin, however, managed to restore the condition to normal. Given the prevalence of PCOS and its impact on fertility, the use of noninvasive methods is of crucial significance. NAC can control and treat pathological parameters and help as a harmless drug in the treatment of women with PCOS.
Collapse
|
6
|
Yu Z, Yu K, Wu S, Zhao Q, Guo Y, Liu H, Huang X. Two contradictory facades of N-acetylcysteine activity towards renal carcinoma cells. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2070365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhihai Yu
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Kun Yu
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Shaobo Wu
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Qiurong Zhao
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Yaochuan Guo
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Hengchuan Liu
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xiao Huang
- School of Physical Education, Guangxi University of Science and Technology, Liuzhou, People’s Republic of China
| |
Collapse
|
7
|
Advanced Oxidation Protein Products Induce G1/G0-Phase Arrest in Ovarian Granulosa Cells via the ROS-JNK/p38 MAPK-p21 Pathway in Premature Ovarian Insufficiency. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6634718. [PMID: 34367464 PMCID: PMC8337115 DOI: 10.1155/2021/6634718] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 01/10/2023]
Abstract
The mechanism underlying the role of oxidative stress and advanced oxidation protein products (AOPPs) in the aetiology of premature ovarian insufficiency (POI) is poorly understood. Here, we investigated the plasma AOPP level in POI patients and the effects of AOPPs on granulosa cells both in vitro and in vivo. KGN cells were treated with different AOPP doses, and cell cycle distribution, intracellular reactive oxygen species (ROS), and protein expression levels were measured. Sprague–Dawley (SD) rats were treated daily with PBS, rat serum albumin, AOPP, or AOPP+ N-acetylcysteine (NAC) for 12 weeks to explore the effect of AOPPs on ovarian function. Plasma AOPP concentrations were significantly higher in both POI and biochemical POI patients than in controls and negatively correlated with anti-Müllerian hormone and the antral follicle count. KGN cells treated with AOPP exhibited G1/G0-phase arrest. AOPP induced G1/G0-phase arrest in KGN cells by activating the ROS-c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK)-p21 pathway. Pretreatment with NAC, SP600125, SB203580, and si-p21 blocked AOPP-induced G1/G0-phase arrest. In SD rats, AOPP treatment increased the proportion of atretic follicles, and NAC attenuated the adverse effects of AOPPs in the ovary. In conclusion, we provide mechanistic evidence that AOPPs may induce cell cycle arrest in granulosa cells via the ROS-JNK/p38 MAPK-p21 pathway and thus may be a novel biomarker of POI.
Collapse
|
8
|
Corrigendum to "The Protective Effect of N-Acetylcysteine on Ionizing Radiation Induced Ovarian Failure and Loss of Ovarian Reserve in Female Mouse". BIOMED RESEARCH INTERNATIONAL 2021; 2021:9817842. [PMID: 34341762 PMCID: PMC8325580 DOI: 10.1155/2021/9817842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 11/24/2022]
|
9
|
Zhang S, Zhu D, Mei X, Li Z, Li J, Xie M, Xie HJW, Wang S, Cheng K. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioact Mater 2020; 6:1957-1972. [PMID: 33426370 PMCID: PMC7773538 DOI: 10.1016/j.bioactmat.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Primary ovarian insufficiency (POI) is an ovarian dysfunction that affects more than 1 % of women and is characterized by hormone imbalances that afflict women before the age of 40. The typical perimenopausal symptoms result from abnormal levels of sex hormones, especially estrogen. The most prevalent treatment is hormone replacement therapy (HRT), which can relieve symptoms and improve quality of life. However, HRT cannot restore ovarian functions, including secretion, ovulation, and fertility. Recently, as part of a developing field of regenerative medicine, stem cell therapy has been proposed for the treatment of POI. Thus, we recapitulate the literature focusing on the use of stem cells and biomaterials for POI treatment, and sum up the underlying mechanisms of action. A thorough understanding of the work already done can aid in the development of guidelines for future translational applications and clinical trials that aim to cure POI by using regenerative medicine and biomedical engineering strategies. This paper illustrates the in-vivo, in-vitro, and cell-free treatments for POI using stem cells and biomaterials. We provide basic theories and suggestions for future research and clinical therapy translation. This review can help researcher to develop guidelines on stem cells treating POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Halle Jiang Williams Xie
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
10
|
Influence of N-acetylcysteine on steroidogenesis and gene expression in porcine placental trophoblast cells. Theriogenology 2020; 161:49-56. [PMID: 33302164 DOI: 10.1016/j.theriogenology.2020.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
N-acetylcysteine (NAC) is a widely used anti-inflammatory agent and antioxidant in vivo and in vitro. As a nutritional supplement, NAC can improve production and reproductive performances in animals through enhancing placental function and regulating hormone production. Trophoblast proliferation and steroid hormone production are two major functions in the placenta. We hypothesized that the effects of NAC on placental function is due to its direct and indirect effects on gene expression in placental trophoblast cells (pTr). To evaluate this hypothesis, we investigated the effects of NAC on steroidogenesis, gene expression, and cell proliferation in porcine pTr in vitro. pTr were treated with NAC in serum-free medium for 24 h with different concentrations (0, 0.1 μM, 1.0 μM, 10.0 μM, 0.1 mM, 1.0 mM, and 10.0 mM). Low-dose NAC (1 μM) stimulated pTr proliferation and decreased progesterone production, while increasing estradiol production (P < 0.05). High-dose NAC (10 mM) suppressed cell proliferation (P < 0.05), but had no effect on steroidogenesis. Low-dose NAC increased CCDN1 and decreased CASP3 and CASP8 mRNA levels (P < 0.05), whereas high-dose NAC decreased CDK4 and CCDN1 and increased CASP3 mRNA levels (P < 0.05). NAC had no effect on the mRNA abundance of StAR and HSD3B. Low-dose NAC upregulated CYP19A1 mRNA expression, and high-dose NAC downregulated CYP11A1 mRNA abundance (P < 0.05). Only low-dose NAC increased NOS3 mRNA abundance and tetrahydrobiopterin reduction (BH4/BH2 ratio). We conclude that NAC may act directly and indirectly on pTr with a dose-dependent manner and may regulate placental function by affecting pTr differentiation via regulating pTr steroid synthesis, cell proliferation, and apoptosis in sows.
Collapse
|
11
|
Lins TLBG, Gouveia BB, Barberino RS, Silva RLS, Monte APO, Pinto JGC, Campinho DSP, Palheta RC, Matos MHT. Rutin prevents cisplatin-induced ovarian damage via antioxidant activity and regulation of PTEN and FOXO3a phosphorylation in mouse model. Reprod Toxicol 2020; 98:209-217. [PMID: 33031932 DOI: 10.1016/j.reprotox.2020.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The aims of the present study were to evaluate the protective effects of rutin during cisplatin-induced ovarian toxicity in mice and to verify the possible involvement of the phosphatase and tension homolog (PTEN)/Forkhead box O3a (FOXO3a) pathway in the rutin actions. Mice received saline solution (control, 0.15 M, i.p.) or cisplatin (5 mg/Kg body weight, i.p.) or they were pretreated with N-acetylcysteine (positive control; 150 mg/Kg of body weight [p.o.]) or with rutin (10, 30 or 50 mg/Kg body weight, p.o.) before cisplatin (5 mg/Kg body weight, i.p.) once daily for 3 days. Next, the ovaries were harvested and destined to histological (follicular morphology and activation), immunohistochemical (cell proliferation and apoptosis) and fluorescence (reactive oxygen species [ROS], glutathione [GSH] and mitochondrial activity) analyses. Moreover, the expression of phosphorylated PTEN (p-PTEN) and FOXO3a (p-FOXO3a) were evaluated to investigate a molecular mechanism by which rutin would prevent the cisplatin-induced ovarian damage. The results showed that pretreatment with N-acetylcysteine or 10 mg/Kg rutin before cisplatin preserved the percentage of normal follicles and cell proliferation, reduced apoptosis and ROS levels and increased active mitochondria and GSH levels compared to the cisplatin treatment (P < 0.05). Cisplatin treatment increased p-PTEN and decreased p-FOXO3a expression in follicles, which was prevented by 10 mg/kg rutin. In conclusion, treatment with 10 mg/Kg rutin has the potential to protect the ovarian follicles against cisplatin-induced toxicity through its antioxidant effects and PTEN/FOXO3a pathway.
Collapse
Affiliation(s)
- Thae Lanne B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Bruna B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Regina L S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Joisyleide G C Pinto
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Daniela S P Campinho
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Raimundo C Palheta
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Maria H T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil.
| |
Collapse
|
12
|
Luo J, Ao Z, Duan Z, Ao Y, Wei S, Chen W, Chen X. Effects of N-Acetylcysteine on the reproductive performance, oxidative stress and RNA sequencing of Nubian goats. Vet Med Sci 2020; 7:156-163. [PMID: 32812379 PMCID: PMC7840200 DOI: 10.1002/vms3.338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
N-acetylcysteine (NAC) has been found to enhance the protective ability of cells to counter balance oxidative stress and inflammation. To investigate the effects of dietary NAC supplementation on the reproductive performance of goats, the reproductive performance and endometrial transcriptome of goats fed with diets with NAC (NAC group) and without NAC supplementation (control group) were compared. Results showed that the goats fed with 0.03% and 0.05% NAC had similar litter size, birth weight, nitric oxide (NO), sex hormones and amino acids levels compared with the goats of the control group. However, feeding with 0.07% NAC supplementation from day 0 to day 30 of gestation remarkably increased the litter size of goats. The goats of the 0.07% NAC group presented increased levels of NO relative to the control group, but their sex hormones and amino acids showed no differences. Comparative transcriptome analysis identified 207 differentially expressed genes (DEGs) in the endometrium between the control and the 0.07% NAC groups. These DEGs included 146 upregulated genes and 61 downregulated genes in the 0.07% NAC group. They were primarily involved in the cellular response to toxic substances, oxidoreductase activity, immune receptor activity, signalling receptor binding, cytokine-cytokine receptor interactions, PI3K-Akt signalling pathway and PPAR signalling pathway. In conclusion, results showed that dietary 0.07% NAC supplementation exerted a beneficial effect on the survival of goat embryos at the early pregnancy stage. Such positive outcome might be due to the increased NO production and affected expression of genes involved in the anti-inflammation pathways of the endometrium.
Collapse
Affiliation(s)
- Jinhong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Institute of Prataculture, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Ye Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Shinan Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
13
|
The potential effect of methylseleninic acid (MSA) against γ-irradiation induced testicular damage in rats: Impact on JAK/STAT pathway. Arch Biochem Biophys 2019; 679:108205. [PMID: 31758927 DOI: 10.1016/j.abb.2019.108205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/31/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
This study suggested that methylseleninic acid (MSA) could respond to the inflammatory signaling associated with ionizing radiation-induced testicular damage. Mature male rats were divided into four groups: negative control, whole body γ-irradiated (IRR) (5 Gy), MSA (0.5 mg/kg, daily for nine consecutive days), and MSA+ IRR groups. MSA increased serum testosterone level and testicular glutathione peroxidase (GPx) as well as decreased the percentage of sperm abnormalities. Radiation prompted inflammatory signaling in the testes through increasing phospho-janus kinase1 (p-JAK1), phospho-signal transducers and activators of transcription 3 (p-STAT3) protein expressions. This induced increment in the inflammatory markers including nuclear factor- kappa B (NF-κB) and interleukin-1beta (IL-1β) levels. Also, radiation induced elevation of nitric oxide (NO) and malondialdhyde (MDA) levels with consequent reduction in testicular reduced glutathione level (GSH) and superoxide dismutase (SOD) activity. MSA significantly counteracted the radiation effect on testicular nuclear factor erythroid-2-related factor-2 (Nrf2) and suppressor of cytokine signaling (Socs3) protein expressions. In summary, this investigation proposed that MSA preserved spermatogenesis through increasing testosterone levels and GPx activity. Additionally, it diminished testicular inflammation by increasing of Nrf2 and Socs3 levels leading to reducing of p-JAK1, p-STAT3 and NF-κB levels. Histopathological examination results of testicular tissues showed a coincidence with the biochemical analysis.
Collapse
|
14
|
Mercantepe T, Topcu A, Rakici S, Tumkaya L, Yilmaz A, Mercantepe F. The radioprotective effect of N-acetylcysteine against x-radiation-induced renal injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29085-29094. [PMID: 31392607 DOI: 10.1007/s11356-019-06110-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was therefore to investigate the effects of radiotherapy on the kidney and the potential use of agents such as N-acetylcysteine (NAC) in developing a future therapeutic protocol for radiation-induced nephrotoxicity at the histopathological and biochemical levels. Our study consisted of three groups: control (oral saline solution only; group 1), irradiation (IR; group 2), and NAC + IR (group 3). The irradiation groups received a single dose of whole-body 6-Gy x-irradiation. The NAC group received 300 mg/kg by the oral route for 7 days, from 5 days before irradiation to 2 days after. All subjects were sacrificed under anesthesia 2 days after irradiation. IR increased tubular necrosis scores (TNS), MDA, and caspase-3 expression, while reducing renal tissue GSH levels. We also observed dilation in renal corpuscles and tubules. Capillary congestion was present in the intertubular spaces. NAC reduced the levels of TNS, MDA, and caspase-3 expression, but increased the levels of renal tissue GSH. ROS-scavenging antioxidants may represent a promising means of preventing renal injury in patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| | - Sema Rakici
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Adnan Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Filiz Mercantepe
- Department of Internal Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|
15
|
Prasad SK, Bose A, Bhattacharjee A, Banerjee O, Singh S, Mukherjee S, Pal S. Radioprotective effect of ethanolic extract of Alocasia indica on γ-irradiation-induced reproductive alterations in ovary and uterus. Int J Radiat Biol 2019; 95:1529-1542. [DOI: 10.1080/09553002.2019.1642545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Ananya Bose
- Department of Physiology, Serampore College, Hooghly, India
| | | | - Oly Banerjee
- Department of Physiology, Serampore College, Hooghly, India
| | | | | | - Swagata Pal
- Department of Physiology, Raja Peary Mohan College, Hooghly, India
| |
Collapse
|
16
|
Tan R, He Y, Zhang S, Pu D, Wu J. Effect of transcutaneous electrical acupoint stimulation on protecting against radiotherapy- induced ovarian damage in mice. J Ovarian Res 2019; 12:65. [PMID: 31324205 PMCID: PMC6642573 DOI: 10.1186/s13048-019-0541-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background Premature ovarian insufficiency (POI) is characterized by early loss of ovarian function that affects women before the age of 40. We aim to explore the protective effects of transcutaneous electrical acupoint stimulation (TEAS) against irradiation-induced ovarian damage in mice. Methods C57BL6 mice were randomly divided into control and irradiation (IR) groups. Then, control group was divided into two treatment subgroups: mock TEAS treatment (control-) and TEAS treatment (control+). IR group was divided into four subgroups according to the time of treatment started: mock TEAS treatment initiated at 2 days after irradiation (IR 2D-), TEAS treatment initiated at 2 days after irradiation (IR 2D+), mock TEAS treatment initiated at 1 week after irradiation (IR 1 W-), and TEAS treatment initiated at 1 week after irradiation (IR 1 W+). The radiation model mice were exposed to single whole body X-ray irradiation (4 Gy), and the control mice received 0 Gy. TEAS stimulation (2 Hz, 1 mA, 30 min/day) was given once a day for six consecutive days per week for 2 weeks. Estrous cycle, ovarian weight, serum AMH level and follicle counts were evaluated. Then, proliferation markers, apoptotic markers and oxidative stress markers were examined. Results Compared with the control group, the estrous cycle was disordered, and the ovarian weight, serum AMH, and primordial, primary and secondary follicles counts decreased (all P < 0.01) in the IR 2D- and IR 1 W- groups. In the irradiation with early TEAS treatment group (IR 2D+), the estrous cycle improved, the AMH level and primordial follicular significantly increased compared to the irradiation with mock group (IR 2D-). However, there were no significant differences in the estrous cycle, AMH level and follicle counts between IR 1 W- and IR 1 W+ groups. Moreover, IR 2D+ mice reduced the expression of Bax protein and increased the levels of Bcl-2 and PCNA compared to the IR 2D- group. Furthermore, the early TEAS treated mice showed significantly lower levels of oxidative stress and number of TUNEL (+) granulosa cells than that in the IR 2D- group. Conclusion This study is first to evaluate TEAS as a potential therapy to attenuate irradiation-induced ovarian failure through inhibiting primordial follicles loss, increasing serum AMH secretion, inducing antioxidant, and anti-apoptotic systems.
Collapse
Affiliation(s)
- Rongrong Tan
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yuheng He
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Suyun Zhang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Danhua Pu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jie Wu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
17
|
Mercantepe F, Topcu A, Rakici S, Tumkaya L, Yilmaz A. The effects of N-acetylcysteine on radiotherapy-induced small intestinal damage in rats. Exp Biol Med (Maywood) 2019; 244:372-379. [PMID: 30786762 PMCID: PMC6488866 DOI: 10.1177/1535370219831225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
IMPACT STATEMENT Some six million cancer patients currently receive radiotherapy. Radiotherapy eliminates cancer cells by accelerating their death. However, radiotherapy is not selective, and it therefore harms healthy tissues around cancerous tissue. The latest studies have shown that the irradiation of biological materials causes a rapid increase in reactive oxygen species (ROS) in the tissue as a result of exposure of the target molecule to direct and indirect ionization. N-acetylcysteine (NAC) is an antioxidant that permits the elimination of free oxygen radicals and that contributes to glutathione synthesis. Our study, therefore, examined the effects of radiation resulting from radiotherapy on the small intestine at the molecular level, and prospectively considered the potential protective characteristics of NAC against gastrointestinal syndrome resulting from radiotherapy.
Collapse
Affiliation(s)
- Filiz Mercantepe
- Department of Internal Medicine, Recep Tayyip Erdogan
University, Rize 53010, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Recep Tayyip Erdogan University,
Rize 53010, Turkey
| | - Sema Rakici
- Department of Radiation Oncology, Recep Tayyip Erdogan
University, Rize 53010, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Recep Tayyip Erdogan
University, Rize 53010, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip
Erdogan University, Rize 53010, Turkey
| |
Collapse
|
18
|
El-Mesallamy HO, Gawish RA, Sallam AAM, Fahmy HA, Nada AS. Ferulic acid protects against radiation-induced testicular damage in male rats: impact on SIRT1 and PARP1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6218-6227. [PMID: 29243149 DOI: 10.1007/s11356-017-0873-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Ionizing radiation is a major contributor to male infertility by destroying spermatogenesis. Therefore, the need for an effective radio-protective agent is evident. The objective of the present study was to investigate the potential radio-protective effect of ferulic acid (FA) on radiation-induced testicular damage. Mature male Sprague-Dawley rats were either exposed to a single-dose gamma radiation (5 Gy) and/or treated with FA (50 mg/kg), daily for 7 days before irradiation. Sirtuin1 (SIRT1), poly (ADP-ribose) polymerase 1 (PARP1), cytosolic calcium content, and the male reproductive functions (sperm head abnormality) as well as oxidative stress markers were assessed 7 days after irradiation. FA significantly maintained active spermatogenesis. Moreover, it reversed the oxidative stress effects of irradiation. The irradiated group showed marked elevation in both PARP1 expression and activity as well as in cytosolic calcium concentration, whereas SIRT1 activity and expression markedly decreased; in contrast, FA treatment prevented these alterations. Results of histopathological examination of testicular tissues indicated coincidence with those recorded by biochemical analyses. Our data show for the first time that FA had radio-protective effect against radiation-induced testicular damage. It improved spermatogenesis through increasing testicular SIRT1 and testosterone levels and decreasing oxidative stress, PARP1, and cytosolic calcium.
Collapse
Affiliation(s)
- Hala O El-Mesallamy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, 11566, Egypt.
| | - Rania A Gawish
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, 11566, Egypt
| | - Hanan A Fahmy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|