1
|
Shoji S, Uchida K, Satio W, Sekiguchi H, Inoue G, Miyagi M, Takata K, Yokozeki Y, Takaso M. Acceleration of bone union by in situ-formed hydrogel containing bone morphogenetic protein-2 in a mouse refractory fracture model. J Orthop Surg Res 2020; 15:426. [PMID: 32948214 PMCID: PMC7501615 DOI: 10.1186/s13018-020-01953-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/09/2020] [Indexed: 11/30/2022] Open
Abstract
Background An enzymatic crosslinking strategy using hydrogen peroxide and horseradish peroxidase is receiving increasing attention for application with in situ-formed hydrogels (IFHs). Several studies have reported the application of IFHs in cell delivery and tissue engineering. IFHs may also be ideal carrier materials for bone repair, although their potential as a carrier for bone morphogenetic protein (BMP)-2 has yet to be examined. Here, we examined the effect of an IFH made of hyaluronic acid (IFH-HA) containing BMP-2 in promoting osteogenesis in a mouse refractory fracture model. Methods Immediately following a fracture procedure, animals either received no treatment (control) or an injection of IFH-HA/PBS or IFH-HA containing 2 μg BMP-2 (IFH-HA/BMP-2) into the fracture site (n = 16, each treatment). Results Fracture sites injected with IFH-HA/BMP-2 showed significantly greater bone volume, bone mineral content, and bone union compared with sites receiving no treatment or treated with IFH-HA/PBS alone (each n = 10). Gene expression levels of osteogenic markers, Alpl, Bglap, and Osx, were significantly raised in the IFH-HA/BMP-2 group compared to the IFH-HA/PBS and control groups (each n = 6). Conclusion IFH-HA/BMP-2 may contribute to the treatment of refractory fractures.
Collapse
Affiliation(s)
- Shintaro Shoji
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan. .,Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki City, Kanagawa, 253-0083, Japan.
| | - Wataru Satio
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Hiroyuki Sekiguchi
- Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki City, Kanagawa, 253-0083, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Ken Takata
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Yuji Yokozeki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| |
Collapse
|
2
|
Shoji S, Uchida K, Saito W, Sekiguchi H, Inoue G, Miyagi M, Kuroda A, Takaso M. Acceleration of Bone Healing by In Situ-Forming Dextran-Tyramine Conjugates Containing Basic Fibroblast Growth Factor in Mice. Cureus 2020; 12:e10085. [PMID: 32874816 PMCID: PMC7455394 DOI: 10.7759/cureus.10085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An enzymatic crosslinking strategy using hydrogen peroxide (H2O2) and horseradish peroxidase (HRP) has been receiving increasing attention for use with in situ-formed hydrogels (IFHs). Several studies have reported the application of IFHs in cell delivery and tissue engineering. IFHs may also be ideal carrier materials for bone repair, although their potential as a carrier for basic fibroblast growth factor (bFGF) has yet to be evaluated. Here, we examined the effect of an IFH made of dextran (Dex)-tyramine (TA) conjugates (IFH-Dex-TA) containing bFGF in promoting bone formation in a fracture model in mice. Immediately following a fracture procedure, animals either received no treatment (control) or an injection of IFH-Dex-TA/phosphate-buffered saline (IFH-Dex-TA/PBS) or IFH-Dex-TA containing 1 μg bFGF (IFH-Dex-TA/bFGF) into the fracture site (n=10, each treatment). Fracture sites injected with IFH-Dex-TA/bFGF showed significantly greater bone volume, mineral content, and bone union than sites receiving no treatment or treated with IFH-Dex-TA/PBS alone (each n=10). This Dex-TA gel may be an effective drug delivery system for optimizing bFGF therapy.
Collapse
Affiliation(s)
- Shintaro Shoji
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Kentaro Uchida
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Wataru Saito
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | | | - Gen Inoue
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Masayuki Miyagi
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Akiyoshi Kuroda
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Masashi Takaso
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| |
Collapse
|