1
|
Yu CX, Liu W, Zhao MH, Xiao H, Wang Y, Luo B. Sequence analysis of Epstein–Barr virus BALF2 gene in associated tumors and healthy individuals from southern and northern China. Future Virol 2022. [DOI: 10.2217/fvl-2021-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The purpose of this study is to investigate the polymorphism and distribution characteristics of BALF2 gene in Epstein–Barr virus (EBV)-associated tumors (gastric cancer, nasopharyngeal carcinoma and lymphoma). Materials & methods: DNA sequences of 349 EBV-related samples were analyzed by nested PCR combined with DNA sequencing. Results: According to the phylogenetic tree, BALF2 was divided into six genotypes ( BALF2-A–F). Statistically, the incidence of BALF2-E in nasopharyngeal carcinoma was higher than that in healthy people, and the incidence of BALF2-E in nasopharyngeal carcinoma in South China was higher than that in North China (p = 0.001). Conclusion: BALF2 variants in EBV-associated samples are not only tumor-specific, but also differ between northern and southern regions.
Collapse
Affiliation(s)
- Cai-xia Yu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Meng-he Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yun Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Movassagh M, Morton SU, Hehnly C, Smith J, Doan TT, Irizarry R, Broach JR, Schiff SJ, Bailey JA, Paulson JN. mirTarRnaSeq: An R/Bioconductor Statistical Package for miRNA-mRNA Target Identification and Interaction Analysis. BMC Genomics 2022; 23:439. [PMID: 35698050 PMCID: PMC9191533 DOI: 10.1186/s12864-022-08558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/17/2022] [Indexed: 11/10/2022] Open
Abstract
We introduce mirTarRnaSeq, an R/Bioconductor package for quantitative assessment of miRNA-mRNA relationships within sample cohorts. mirTarRnaSeq is a statistical package to explore predicted or pre-hypothesized miRNA-mRNA relationships following target prediction.We present two use cases applying mirTarRnaSeq. First, to identify miRNA targets, we examined EBV miRNAs for interaction with human and virus transcriptomes of stomach adenocarcinoma. This revealed enrichment of mRNA targets highly expressed in CD105+ endothelial cells, monocytes, CD4+ T cells, NK cells, CD19+ B cells, and CD34 cells. Next, to investigate miRNA-mRNA relationships in SARS-CoV-2 (COVID-19) infection across time, we used paired miRNA and RNA sequenced datasets of SARS-CoV-2 infected lung epithelial cells across three time points (4, 12, and 24 hours post-infection). mirTarRnaSeq identified evidence for human miRNAs targeting cytokine signaling and neutrophil regulation immune pathways from 4 to 24 hours after SARS-CoV-2 infection. Confirming the clinical relevance of these predictions, three of the immune specific mRNA-miRNA relationships identified in human lung epithelial cells after SARS-CoV-2 infection were also observed to be differentially expressed in blood from patients with COVID-19. Overall, mirTarRnaSeq is a robust tool that can address a wide-range of biological questions providing improved prediction of miRNA-mRNA interactions.
Collapse
Affiliation(s)
- Mercedeh Movassagh
- Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sarah U Morton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Christine Hehnly
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jasmine Smith
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Trang T Doan
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Center for Neural Engineering and Center for Infectious Disease Dynamics, Departments of Engineering Science and Mechanics, Neurosurgery and Physics, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Rafael Irizarry
- Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - James R Broach
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Steven J Schiff
- Center for Neural Engineering and Center for Infectious Disease Dynamics, Departments of Engineering Science and Mechanics, Neurosurgery and Physics, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Jeffrey A Bailey
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Joseph N Paulson
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States.
| |
Collapse
|
3
|
Bortone F, Scandiffio L, Cavalcante P, Mantegazza R, Bernasconi P. Epstein-Barr Virus in Myasthenia Gravis: Key Contributing Factor Linking Innate Immunity with B-Cell-Mediated Autoimmunity. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epstein-Barr virus (EBV), a common human herpes virus latently infecting most of the world’s population with periodic reactivations, is the main environmental factor suspected to trigger and/or sustain autoimmunity by its ability to disrupt B-cell tolerance checkpoints. Myasthenia gravis (MG) is a prototypic autoimmune disorder, mostly caused by autoantibodies to acetylcholine receptor (AChR) of the neuromuscular junction, which cause muscle weakness and fatigability. Most patients display hyperplastic thymus, characterized by ectopic germinal center formation, chronic inflammation, exacerbated Toll-like receptor activation, and abnormal B-cell activation. After an overview on MG clinical features and intra-thymic pathogenesis, in the present chapter, we describe our main findings on EBV presence in MG thymuses, including hyperplastic and thymoma thymuses, in relationship with innate immunity activation and data from other autoimmune conditions. Our overall data strongly indicate a critical contribution of EBV to innate immune dysregulation and sustained B-cell-mediated autoimmune response in the pathological thymus of MG patients.
Collapse
|
4
|
Kimura H, Okuno Y, Sato Y, Watanabe T, Murata T. Deletion of Viral microRNAs in the Oncogenesis of Epstein-Barr Virus-Associated Lymphoma. Front Microbiol 2021; 12:667968. [PMID: 34305835 PMCID: PMC8297563 DOI: 10.3389/fmicb.2021.667968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Epstein–Barr virus (EBV), which encodes >80 genes and nearly 50 non-coding RNAs, is a double-stranded DNA virus. EBV is associated with various types of lymphomas and lymphoproliferative disorders not only of B-cell but also T/NK-cell origin. However, the oncogenic mechanism remains poorly understood, including the EBV receptors expressed on T/NK cells, relationship of EBV with host genes, and epigenetic regulation of EBV and host genes. The roles of host and viral non-coding RNAs during tumorigenesis have been elucidated. EBV encodes at least 49 mature microRNAs (miRNAs), of which 44 are located in BamHI-A rightward transcripts (BARTs) region, and the remaining five are located in BamHI-H rightward fragment 1. BART miRNAs modulate cell differentiation, proliferation, apoptosis, and the cell cycle, and they are considered positive regulators of oncogenesis. We and others have recently reported that EBV-positive lymphomas frequently possess large deletions in BART miRNA clusters, suggesting that some viral miRNAs have suppressive effects on oncogenesis, and that deletion of these miRNAs may aid lymphoma formation.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|