1
|
Vashchenko OV, Berest VP, Sviechnikova LV, Kutsevol NV, Kasian NA, Sofronov DS, Skorokhod O. Modifying Membranotropic Action of Antimicrobial Peptide Gramicidin S by Star-like Polyacrylamide and Lipid Composition of Nanocontainers. Int J Mol Sci 2024; 25:8691. [PMID: 39201384 PMCID: PMC11354511 DOI: 10.3390/ijms25168691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gramicidin S (GS), one of the first discovered antimicrobial peptides, still shows strong antibiotic activity after decades of clinical use, with no evidence of resistance. The relatively high hemolytic activity and narrow therapeutic window of GS limit its use in topical applications. Encapsulation and targeted delivery may be the way to develop the internal administration of this drug. The lipid composition of membranes and non-covalent interactions affect GS's affinity for and partitioning into lipid bilayers as monomers or oligomers, which are crucial for GS activity. Using both differential scanning calorimetry (DSC) and FTIR methods, the impact of GS on dipalmitoylphosphatidylcholine (DPPC) membranes was tested. Additionally, the combined effect of GS and cholesterol on membrane characteristics was observed; while dipalmitoylphosphatydylglycerol (DPPG) and cerebrosides did not affect GS binding to DPPC membranes, cholesterol significantly altered the membrane, with 30% mol concentration being most effective in enhancing GS binding. The effect of star-like dextran-polyacrylamide D-g-PAA(PE) on GS binding to the membrane was tested, revealing that it interacted with GS in the membrane and significantly increased the proportion of GS oligomers. Instead, calcium ions affected GS binding to the membrane differently, with independent binding of calcium and GS and no interaction between them. This study shows how GS interactions with lipid membranes can be effectively modulated, potentially leading to new formulations for internal GS administration. Modified liposomes or polymer nanocarriers for targeted GS delivery could be used to treat protein misfolding disorders and inflammatory conditions associated with free-radical processes in cell membranes.
Collapse
Affiliation(s)
- Olga V. Vashchenko
- Institute for Scintillation Materials of NAS of Ukraine, 60 Nauky Ave., 61172 Kharkiv, Ukraine; (O.V.V.); (L.V.S.)
| | - Volodymyr P. Berest
- Department of Molecular and Medical Biophysics, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
| | - Liliia V. Sviechnikova
- Institute for Scintillation Materials of NAS of Ukraine, 60 Nauky Ave., 61172 Kharkiv, Ukraine; (O.V.V.); (L.V.S.)
| | - Nataliya V. Kutsevol
- Research Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., 01601 Kyiv, Ukraine;
| | - Natalia A. Kasian
- Institute for Scintillation Materials of NAS of Ukraine, 60 Nauky Ave., 61172 Kharkiv, Ukraine; (O.V.V.); (L.V.S.)
| | - Dmitry S. Sofronov
- State Scientific Institution “Institute for Single Crystals” of NAS of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
2
|
Bunyatova U, Hammouda MB, Y Zhang J. Preparation of injectable hydrophilic dextran/AgNPs nanocomposite product: White light active biomolecules as an antitumor agent. Int J Biol Macromol 2023; 245:125215. [PMID: 37285880 PMCID: PMC11037523 DOI: 10.1016/j.ijbiomac.2023.125215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Incidence of various cancers including melanoma continues to rise worldwide. While treatment options have expanded in the recent years, the benefit of these treatments suffer from short period of duration for many patients. Hence, new treatment options are highly desired. Here, we propose a method combining a Dextran/reactive-copolymer/AgNPs nanocomposite and a harmless visible light approach to obtain a plasma substitute carbohydrate-based nanoproduct (D@AgNP) that shows strong antitumor activity. Light-driven polysaccharide-based nanocomposite provided essential conditions for extra small (8-12nm) AgNPs capping with subsequent specific self-assembly into spherical-like cloud nanostructures. Obtained biocompatible D@AgNP are stable over six months at room temperature and demonstrated absorbance peak at 406 nm. New formulated nanoproduct revealed efficient anticancer properties against A375 with IC50 0.0035 mg/mL following 24-h incubation; complete cell death is achieved at 0.001 mg/mL and 0.0005 mg/mL by 24- and 48-h time points, respectively. SEM examination shows that D@AgNP altered the shape of the cell structure and damaged the cell membrane. TEM finding shows that D@AgNP are mostly localized at vesicles such as the endosomes, lysosomes and mitochondria. It is anticipated that the introduced new method serves as the cornerstone for improving the generation of biocompatible hydrophilic carbohydrate-based anticancer drugs.
Collapse
Affiliation(s)
- Ulviye Bunyatova
- Biomedical Department, Engineering Facility, Baskent UniversityAnkara, Turkey; Department of Electrical and Computer Engineering, Duke University, Pratt School of Engineering, Durham, NC, USA.
| | - Manel Ben Hammouda
- Department of Dermatology, Duke University, School of Medicine, Durham, NC, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, School of Medicine, Durham, NC, USA; Department of Pathology, Duke University, School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Grebinyk A, Prylutska S, Grebinyk S, Ponomarenko S, Virych P, Chumachenko V, Kutsevol N, Prylutskyy Y, Ritter U, Frohme M. Drug delivery with a pH-sensitive star-like dextran-graft polyacrylamide copolymer. NANOSCALE ADVANCES 2022; 4:5077-5088. [PMID: 36504750 PMCID: PMC9680934 DOI: 10.1039/d2na00353h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
The development of precision cancer medicine relies on novel formulation strategies for targeted drug delivery to increase the therapeutic outcome. Biocompatible polymer nanoparticles, namely dextran-graft-polyacrylamide (D-g-PAA) copolymers, represent one of the innovative non-invasive approaches for drug delivery applications in cancer therapy. In this study, the star-like D-g-PAA copolymer in anionic form (D-g-PAAan) was developed for pH-triggered targeted drug delivery of the common chemotherapeutic drugs - doxorubicin (Dox) and cisplatin (Cis). The initial D-g-PAA copolymer was synthesized by the radical graft polymerization method, and then alkaline-hydrolyzed to get this polymer in anionic form for further use for drug encapsulation. The acidification of the buffer promoted the release of loaded drugs. D-g-PAAan nanoparticles increased the toxic potential of the drugs against human and mouse lung carcinoma cells (A549 and LLC), but not against normal human lung cells (HEL299). The drug-loaded D-g-PAAan-nanoparticles promoted further oxidative stress and apoptosis induction in LLC cells. D-g-PAAan-nanoparticles improved Dox accumulation and drugs' toxicity in a 3D LLC multi-cellular spheroid model. The data obtained indicate that the strategy of chemotherapeutic drug encapsulation within the branched D-g-PAAan nanoparticle allows not only to realize pH-triggered drug release but also to potentiate its cytotoxic, prooxidant and proapoptotic effects against lung carcinoma cells.
Collapse
Affiliation(s)
- Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| | - Svitlana Prylutska
- National University of Life and Environmental Science of Ukraine Heroiv Oborony Str., 15 03041 Kyiv Ukraine
| | - Sergii Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| | - Stanislav Ponomarenko
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
| | - Pavlo Virych
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
| | - Vasyl Chumachenko
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
| | - Nataliya Kutsevol
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
- Institute Charles Sadron 23 Rue du Loess 67200 Strasbourg France
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
| | - Uwe Ritter
- Technical University of Ilmenau, Institute of Chemistry and Biotechnology Weimarer Str., 25 98693 Ilmenau Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| |
Collapse
|
4
|
Cytotoxicity of Hybrid Noble Metal-Polymer Composites. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1487024. [PMID: 36267838 PMCID: PMC9578826 DOI: 10.1155/2022/1487024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
The aim of the present research was to assess the cytotoxicity of gold and silver nanoparticles synthesized into dextran-graft-polyacrylamide (D-PAA) polymer nanocarrier, which were used as a basis for further preparation of multicomponent nanocomposites revealed high efficacy for antitumor therapy. The evaluation of the influence of Me-polymer systems on the viability and metabolic activity of fibroblasts and eryptosis elucidating the mechanisms of the proeryptotic effects has been done in the current research. The nanocomposites investigated in this study did not reduce the survival of fibroblasts even at the highest used concentration. Our findings suggest that hybrid Ag/D-PAA composite activated eryptosis via ROS- and Ca2+-mediated pathways at the low concentration, in contrast to other studied materials. Thus, the cytotoxicity of Ag/D-PAA composite against erythrocytes was more pronounced compared with D-PAA and hybrid Au/polymer composite. Eryptosis is a more sensitive tool for assessing the biocompatibility of nanomaterials compared with fibroblast viability assays.
Collapse
|
5
|
Role of Polymer Concentration and Crosslinking Density on Release Rates of Small Molecule Drugs. Int J Mol Sci 2022; 23:ijms23084118. [PMID: 35456935 PMCID: PMC9028196 DOI: 10.3390/ijms23084118] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few years, researchers have demonstrated the use of hydrogels to design drug delivery platforms that offer a variety of benefits, including but not limited to longer circulation times, reduced drug degradation, and improved targeting. Furthermore, a variety of strategies have been explored to develop stimulus-responsive hydrogels to design smart drug delivery platforms that can release drugs to specific target areas and at predetermined rates. However, only a few studies have focused on exploring how innate hydrogel properties can be optimized and modulated to tailor drug dosage and release rates. Here, we investigated the individual and combined roles of polymer concentration and crosslinking density (controlled using both chemical and nanoparticle-mediated physical crosslinking) on drug delivery rates. These experiments indicated a strong correlation between the aforementioned hydrogel properties and drug release rates. Importantly, they also revealed the existence of a saturation point in the ability to control drug release rates through a combination of chemical and physical crosslinkers. Collectively, our analyses describe how different hydrogel properties affect drug release rates and lay the foundation to develop drug delivery platforms that can be programmed to release a variety of bioactive payloads at defined rates.
Collapse
|
6
|
Effect of gold nanocomposites treatment on male reproductive function under conditions of experimental chronic kidney disease. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Chernykh M, Zavalny D, Sokolova V, Ponomarenko S, Prylutska S, Kuziv Y, Chumachenko V, Marynin A, Kutsevol N, Epple M, Ritter U, Piosik J, Prylutskyy Y. A New Water-Soluble Thermosensitive Star-Like Copolymer as a Promising Carrier of the Chemotherapeutic Drug Doxorubicin. MATERIALS 2021; 14:ma14133517. [PMID: 34202610 PMCID: PMC8269508 DOI: 10.3390/ma14133517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
A new water-soluble thermosensitive star-like copolymer, dextran-graft-poly-N-iso-propilacrylamide (D-g-PNIPAM), was created and characterized by various techniques (size-exclusion chromatography, differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) spectroscopy). The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa) as a model for cancer cells was studied using MTT and Live/Dead assays after incubation with a D-g-PNIPAM copolymer as a carrier for the drug doxorubicin (Dox) as well as a D-g-PNIPAM + Dox mixture as a function of the concentration. FTIR spectroscopy clearly indicated the complex formation of Dox with the D-g-PNIPAM copolymer. The size distribution of particles in Hank’s solution was determined by the DLS technique at different temperatures. The in vitro uptake of the studied D-g-PNIPAM + Dox nanoparticles into cancer cells was demonstrated by confocal laser scanning microscopy. It was found that D-g-PNIPAM + Dox nanoparticles in contrast to Dox alone showed higher toxicity toward cancer cells. All of the aforementioned facts indicate a possibility of further preclinical studies of the water-soluble D-g-PNIPAM particles’ behavior in animal tumor models in vivo as promising carriers of anticancer agents.
Collapse
Affiliation(s)
- Mariia Chernykh
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Dmytro Zavalny
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Viktoriya Sokolova
- Center for Nanointegration Duisburg-Essen (CeNIDE), Institute of Inorganic Chemistry, University of Duisburg-Essen, University Street, 5-7, 45117 Essen, Germany; (V.S.); (M.E.)
| | - Stanislav Ponomarenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Svitlana Prylutska
- Department of Physiology, Plant Biochemistry and Bioenergetics, National University of Life and Environmental Science of Ukraine, Heroiv Oborony Street, 15, 03041 Kyiv, Ukraine;
| | - Yuliia Kuziv
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Vasyl Chumachenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Andrii Marynin
- National University of Food Technologies of Ukraine, Volodymyrska Street, 01033 Kyiv, Ukraine;
| | - Nataliya Kutsevol
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Matthias Epple
- Center for Nanointegration Duisburg-Essen (CeNIDE), Institute of Inorganic Chemistry, University of Duisburg-Essen, University Street, 5-7, 45117 Essen, Germany; (V.S.); (M.E.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Street, 25, 98693 Ilmenau, Germany;
| | - Jacek Piosik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland
- Correspondence: (J.P.); (Y.P.)
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
- Correspondence: (J.P.); (Y.P.)
| |
Collapse
|
8
|
Kaleynikova ON, Ukrainska SI, Sribna VA, Kutsevol NV, Kuziv YI, Vinogradova-Anyk AA, Karvatskiy IN, Voznesenskaya TY, Blashkiv TV. Effect of gold nanocomposite treatment on male reproductive function. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01805-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Asnawi AS, Aziz SB, Brevik I, Brza MA, Yusof YM, Alshehri SM, Ahamad T, Kadir MFZ. The Study of Plasticized Sodium Ion Conducting Polymer Blend Electrolyte Membranes Based on Chitosan/Dextran Biopolymers: Ion Transport, Structural, Morphological and Potential Stability. Polymers (Basel) 2021; 13:polym13030383. [PMID: 33530553 PMCID: PMC7865308 DOI: 10.3390/polym13030383] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
The polymer electrolyte system of chitosan/dextran-NaTf with various glycerol concentrations is prepared in this study. The electrical impedance spectroscopy (EIS) study shows that the addition of glycerol increases the ionic conductivity of the electrolyte at room temperature. The highest conducting plasticized electrolyte shows the maximum DC ionic conductivity of 6.10 × 10−5 S/cm. Field emission scanning electron microscopy (FESEM) is used to investigate the effect of plasticizer on film morphology. The interaction between the electrolyte components is confirmed from the existence of the O–H, C–H, carboxamide, and amine groups. The XRD study is used to determine the degree of crystallinity. The transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D) of ions are determined using the percentage of free ions, due to the asymmetric vibration (υas(SO3)) and symmetric vibration (υs(SO3)) bands. The dielectric property and relaxation time are proved the non-Debye behavior of the electrolyte system. This behavior model is further verified by the existence of the incomplete semicircle arc from the Argand plot. Transference numbers of ion (tion) and electron (te) for the highest conducting plasticized electrolyte are identified to be 0.988 and 0.012, respectively, confirming that the ions are the dominant charge carriers. The tion value are used to further examine the contribution of ions in the values of the diffusion coefficient and mobility of ions. Linear sweep voltammetry (LSV) shows the potential window for the electrolyte is 2.55 V, indicating it to be a promising electrolyte for application in electrochemical energy storage devices.
Collapse
Affiliation(s)
- Ahmad S.F.M. Asnawi
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah, Malacca 78000, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Shujahadeen B. Aziz
- Hameedmajid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
- Correspondence: (S.B.A.); (I.B.)
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- Correspondence: (S.B.A.); (I.B.)
| | - Mohamad A. Brza
- Hameedmajid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Yuhanees M. Yusof
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah, Malacca 78000, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Saad M. Alshehri
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.M.A.); (T.A.)
| | - Tansir Ahamad
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.M.A.); (T.A.)
| | - M. F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
10
|
Maheshwari T, Tamilarasan K, Selvasekarapandian S, Chitra R, Kiruthika S. Investigation of blend biopolymer electrolytes based on Dextran-PVA with ammonium thiocyanate. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04850-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Multicomponent Nanocomposites for Complex Anticancer Therapy: Effect of Aggregation Processes on Their Efficacy. INT J POLYM SCI 2020. [DOI: 10.1155/2020/9627954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Multicomponent nanocomposites for anticancer therapy were prepared, characterized, and tested for their antitumor efficacy. The water-soluble star-like dextran-graft-polyacrylamide copolymer was used as a nanoplatform for the creation of polymer-based multicomponent drug delivery systems for photodynamic and combined (photodynamic+chemotherapy) antitumor therapy. The three-component nanocomposites with incorporated gold nanoparticles and photosensitizer and the four-component ones additionally loaded by Doxorubicin into polymer nanoplatform were studied at 25 and 37°C by transmission electron microscopy and dynamic light scattering. Nanocomposites were tested for their photodynamic cytotoxicity for the cell line of breast cancer MCF-7/S. Three-component nanocomposites demonstrated higher efficacy than the four-component ones. The decrease in the activity of the four-component systems is explained by the aggregation process caused by the introduction of an additional component, which leads to a decrease in the hydrophilic-hydrophobic balance of the polymer macromolecule.
Collapse
|
12
|
A Novel Branched Copolymer-Containing Anticancer Drug for Targeted Therapy: In Vitro Research. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00700-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Harahuts Y, Kutsevol N, Melnik N, Nadtoka O, Virych P. Studying the nanosystem thermosensitive branched polymer/nanogold/chlorine e6 in Hanks’ balanced salt solution. Polym J 2019. [DOI: 10.15407/polymerj.41.03.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Aziz SB, Hamsan MH, Kadir MFZ, Karim WO, Abdullah RM. Development of Polymer Blend Electrolyte Membranes Based on Chitosan: Dextran with High Ion Transport Properties for EDLC Application. Int J Mol Sci 2019; 20:ijms20133369. [PMID: 31323971 PMCID: PMC6651713 DOI: 10.3390/ijms20133369] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022] Open
Abstract
Solid polymer blend electrolyte membranes (SPBEM) composed of chitosan and dextran with the incorporation of various amounts of lithium perchlorate (LiClO4) were synthesized. The complexation of the polymer blend electrolytes with the salt was examined using FTIR spectroscopy and X-ray diffraction (XRD). The morphology of the SPBEs was also investigated using field emission scanning electron microscopy (FESEM). The ion transport behavior of the membrane films was measured using impedance spectroscopy. The membrane with highest LiClO4 content was found to exhibit the highest conductivity of 5.16 × 10−3 S/cm. Ionic (ti) and electronic (te) transference numbers for the highest conducting electrolyte were found to be 0.98 and 0.02, respectively. Electrochemical stability was estimated from linear sweep voltammetry and found to be up to ~2.3V for the Li+ ion conducting electrolyte. The only existence of electrical double charging at the surface of electrodes was evidenced from the absence of peaks in cyclic voltammetry (CV) plot. The discharge slope was observed to be almost linear, confirming the capacitive behavior of the EDLC. The performance of synthesized EDLC was studied using CV and charge–discharge techniques. The highest specific capacitance was achieved to be 8.7 F·g−1 at 20th cycle. The efficiency (η) was observed to be at 92.8% and remained constant at 92.0% up to 100 cycles. The EDLC was considered to have a reasonable electrode-electrolyte contact, in which η exceeds 90.0%. It was determined that equivalent series resistance (Resr) is quite low and varies from 150 to 180 Ω over the 100 cycles. Energy density (Ed) was found to be 1.21 Wh·kg−1 at the 1st cycle and then remained stable at 0.86 Wh·kg−1 up to 100 cycles. The interesting observation is that the value of Pd increases back to 685 W·kg−1 up to 80 cycles.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq.
- Komar Research Center (KRC), Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq.
| | - Muhamad H Hamsan
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohd F Z Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wrya O Karim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Ranjdar M Abdullah
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
| |
Collapse
|
15
|
Matvienko T, Sokolova V, Prylutska S, Harahuts Y, Kutsevol N, Kostjukov V, Evstigneev M, Prylutskyy Y, Epple M, Ritter U. In vitro study of the anticancer activity of various doxorubicin-containing dispersions. BIOIMPACTS : BI 2018; 9:57-63. [PMID: 30788260 PMCID: PMC6378100 DOI: 10.15171/bi.2019.07] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 01/30/2023]
Abstract
Introduction: The aim of this research was to study the impact of various doxorubicin (Dox)-containing nanofluids, e.g. singlewalled carbon nanotube (SWCNT)+Dox, graphene oxide (GO)+Dox and DextranPNIPAM (copolymer)+Dox mixtures on HeLa cells (human transformed cervix epithelial cells, as a model for cancer cells) depending on their concentration. Methods: Structural analysis of GO+Dox complex was accomplished using Hartree-Fock level of theory in 6-31G** basis set in Gaussian. Dynamic light scattering (DLS), zeta-potential, scanning electron microscopy and confocal laser scanning microscopy were used. The cell viability was analyzed by the MTT assay. Results: The viability of HeLa cells was studied with the MTT assay after the incubation with various Dox-containing dispersions depending on their concentration. The size of the particles was determined by DLS. The morphology of the nanoparticles (NPs) was studied by scanning electron microscopy and their uptake into cells was visualized by confocal laser scanning microscopy. It was found that the Dextran-PNIPAM+Dox nanofluid in contrast to Dox alone showed higher toxicity towards HeLa cells up to 80% after 24 hours of incubation, whereas the SWCNT+Dox and GO+Dox nanofluids at the same concentrations protected cells from Dox. Conclusion: The importance of Dextran-PNIPAM copolymer as a universal platform for drug delivery was established, and the huge potential of Dextran-PNIPAM+Dox NPs as novel anticancer agents was noted. Based on the in vitro study of the SWCNT+Dox and GO+Dox nanofluids, it was concluded that SWCNT and GO NPs can be effective cytoprotectors against the highly toxic drugs.
Collapse
Affiliation(s)
- Tatiana Matvienko
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, 01601 Kyiv, Ukraine
| | - Viktoriya Sokolova
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, University Str., 5-7, 45117 Essen, German
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, 01601 Kyiv, Ukraine
| | - Yuliia Harahuts
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, 01601 Kyiv, Ukraine
| | - Nataliya Kutsevol
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, 01601 Kyiv, Ukraine
| | - Viktor Kostjukov
- Department of Physics, Sevastopol State University, Universitetskaya Str., 33, 299053 Sevastopol, Crimea
| | - Maxim Evstigneev
- Department of Physics, Sevastopol State University, Universitetskaya Str., 33, 299053 Sevastopol, Crimea
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, 01601 Kyiv, Ukraine
| | - Matthias Epple
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, University Str., 5-7, 45117 Essen, German
| | - Uwe Ritter
- Technical University Ilmenau, Institute of Chemistry and Biotechnology, Weimarer Str., 25, 98693 Ilmenau, Germany
| |
Collapse
|
16
|
Chumachenko V, Harahuts Y, Kutsevol N, Melnyk N, Nadtoka O. The investigation of nanosystems branched polymer/nanogold in the region of conformational transition of a polymer matrix. Polym J 2018. [DOI: 10.15407/polymerj.40.01.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|