1
|
Song Y, Zhu L, Zheng X. β-carotene inhibits MAPKs signaling pathways on rat colonic epithelial cells to attenuate TNF-α-induced intestinal inflammation and injury. Cell Biochem Biophys 2024; 82:291-302. [PMID: 38082173 DOI: 10.1007/s12013-023-01202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/19/2023] [Indexed: 02/16/2024]
Abstract
This experiment successfully isolated the rat colonic epithelial cells and established a TNF-α-induced intestinal inflammation model. Western Blot was used to detect the related protein expression levels of the MAPKs signaling pathway. QPCR technology was used to detect the expression of aquaporins, intestinal mucosal repair factor, and inflammatory factors. The results show that 25 μM β-carotene pretreatment at 24 h can inhibit MAPKs signaling pathway activated by TNF-α, change the relative mRNA expression of inflammatory cytokines, intestinal mucosal repair factors, and aquaporins, and the phosphorylated protein expression of p38, ERK, and NF-κB were attenuated to reduce inflammatory damage. After inhibiting p38 and ERK, the effect of β-carotene was reduced significantly (P < 0.05). In conclusion, β-carotene can alleviate the abnormal expression of aquaporins caused by inflammation through the MAPKs signaling pathway. This is for β-carotene as a functional nutrient that provides new insights.
Collapse
Affiliation(s)
- Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Lingyu Zhu
- Department of Nutrition and Food, School of Public Health, Beihua University, Jilin, Jilin Province, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Wang G, Zhang H, Zhou Z, Jin W, Zhang X, Ma Z, Wang X. AQP3-mediated activation of the AMPK/SIRT1 signaling pathway curtails gallstone formation in mice by inhibiting inflammatory injury of gallbladder mucosal epithelial cells. Mol Med 2023; 29:116. [PMID: 37641009 PMCID: PMC10463418 DOI: 10.1186/s10020-023-00712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Inflammatory injury of gallbladder mucosal epithelial cells affects the development of cholelithiasis, and aquaporin 3 (AQP3) is an important regulator of inflammatory response. This study reports a mechanistic insight into AQP3 regulating gallstone formation in cholelithiasis based on high-throughput sequencing. METHODS A mouse model of cholelithiasis was induced using a high-fat diet, and the gallbladder tissues were harvested for high-throughput sequencing to obtain differentially expressed genes. Primary mouse gallbladder mucosal epithelial cells were isolated and induced with Lipopolysaccharides (LPS) to mimic an in vitro inflammatory injury environment. Cell biological phenotypes were detected by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay, and Trypan blue staining. In addition, enzyme linked immunosorbent assay (ELISA) determined the production of inflammatory factors in mouse gallbladder mucosa. RESULTS Whole-transcriptome sequencing data analysis identified 489 up-regulated and 1007 down-regulated mRNAs. Bioinformatics analysis revealed that AQP3 was significantly down-regulated in mice with cholelithiasis. AQP3 might also confer an important role in LPS-induced gallbladder mucosal injury. Overexpression of AQP3 activated the AMPK (adenosine monophosphate-activated protein kinase) / SIRT1 (sirtuin-1) signaling pathway to reduce LPS-induced inflammatory injury of the gallbladder mucosa epithelium, thereby ameliorating gallbladder damage and repressing gallstone formation in mice. CONCLUSION Data from our study highlight the inhibitory role of AQP3 in gallbladder damage and gallstone formation in mice by reducing inflammatory injury of gallbladder mucosal epithelial cells, which is achieved through activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zenghui Ma
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
3
|
Screening the effective components in treating dampness stagnancy due to spleen deficiency syndrome and elucidating the potential mechanism of Poria water extract. Chin J Nat Med 2023; 21:83-98. [PMID: 36871985 DOI: 10.1016/s1875-5364(23)60392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 03/07/2023]
Abstract
Poria is an important medicine for inducing diuresis to drain dampness from the middle energizer. However, the specific effective components and the potential mechanism of Poria remain largely unknown. To identify the effective components and the mechanism of Poria water extract (PWE) to treat dampness stagnancy due to spleen deficiency syndrome (DSSD), a rat model of DSSD was established through weight-loaded forced swimming, intragastric ice-water stimulation, humid living environment, and alternate-day fasting for 21 days. After 14 days of treatment with PWE, the results indicated that PWE increased fecal moisture percentage, urine output, D-xylose level and weight; amylase, albumin, and total protein levels; and the swimming time of rats with DSSD to different extents. Eleven highly related components were screened out using the spectrum-effect relationship and LC-MS. Mechanistic studies revealed that PWE significantly increased the expression of serum motilin (MTL), gastrin (GAS), ADCY5/6, p-PKAα/β/γ cat, and phosphorylated cAMP-response element binding protein in the stomach, and AQP3 expression in the colon. Moreover, it decreased the levels of serum ADH, the expression of AQP3 and AQP4 in the stomach, AQP1 and AQP3 in the duodenum, and AQP4 in the colon. PWE induced diuresis to drain dampness in rats with DSSD. Eleven main effective components were identified in PWE. They exerted therapeutic effect by regulating the AC-cAMP-AQP signaling pathway in the stomach, MTL and GAS levels in the serum, AQP1 and AQP3 expression in the duodenum, and AQP3 and AQP4 expression in the colon.
Collapse
|
4
|
Tu J, Xie Y, Xu K, Qu L, Lin X, Ke C, Yang D, Cao G, Zhou Z, Liu Y. Treatment of Spleen-Deficiency Syndrome With Atractyloside A From Bran-Processed Atractylodes lancea by Protection of the Intestinal Mucosal Barrier. Front Pharmacol 2021; 11:583160. [PMID: 33658928 PMCID: PMC7919195 DOI: 10.3389/fphar.2020.583160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC. (AL) is used in traditional Chinese medicine for the treatment of spleen-deficiency syndrome (SDS). Bran-processed Atractylodes lancea (BAL) has been found to be more effective than unprocessed AL. However, the compound in BAL active against SDS remains unclear. The pharmacological efficacy of BAL and its mechanism of action against SDS were investigated by HPLC-ELSD. Candidate compound AA (atractyloside A) in AL and BAL extracts was identified by HPLC-MS analysis. AA was tested in a rat model of SDS in which body weight, gastric residual rate, and intestinal propulsion were measured, and motilin (MTL), gastrin (GAS), and c-Kit were quantified by enzyme-linked immunosorbent assay. Potential targets and associated pathways were identified based on network pharmacology analysis. mRNA expression levels were measured by qRT-PCR and protein expression levels were measured by Western blot analysis and immunohistochemistry. AA increased body weight, intestinal propulsion, MTL, GAS, and c-Kit levels, while decreasing gastric residual volume and intestinal tissue damage, as same as Epidermal Growth Factor Receptor and Proliferating Cell Nuclear Antigen levels. Seventy-one potential pharmacologic targets were identified. Analysis of protein interaction, Gene Ontology (GO) functional analysis, pathway enrichment analysis, and docking and molecular interactions highlighted MAPK signaling as the potential signal transduction pathway. Validation experiments indicated that treatment with AA increased MTL, GAS, ZO-1, and OCLN levels, while reducing AQP1, AQP3, and FGF2 levels. In addition, phosphorylation of p38 and myosin light-chain kinase (MLCK) expression were inhibited. AA improved gastrointestinal function by protecting the intestinal mucosal barrier via inhibition of the p38 MAPK pathway. The results have clinical implications for the therapy of SDS.
Collapse
Affiliation(s)
- Jiyuan Tu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine, Wuhan, China
| | - Ying Xie
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiong Lin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chang Ke
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Desen Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guosheng Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanju Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
5
|
Chen X, Deng S, Lei Q, He Q, Ren Y, Zhang Y, Nie J, Lu W. miR-7-5p Affects Brain Edema After Intracerebral Hemorrhage and Its Possible Mechanism. Front Cell Dev Biol 2020; 8:598020. [PMID: 33392188 PMCID: PMC7772315 DOI: 10.3389/fcell.2020.598020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: To explore the relationship between miR-7-5p and brain edema after intracerebral hemorrhage and the role of butylphthalide (NBP) in brain edema after intracerebral hemorrhage. Method: Routine blood testing, C-reactive protein results, and computed tomography data were collected 1, 7, and 14 days after intracerebral hemorrhage in six patients. Levels of MMP-9, ZO-1, occludin, IL-6, TNF-α, and miR-7-5p were detected in each patient's serum. Sixty male Sprague-Dawley rats were randomly divided into sham operation, intracerebral hemorrhage, and NBP treatment groups. Dry-wet weight was used to assess brain edema, and Evans blue staining was used to assess the permeability of the blood-brain barrier. Expression levels of IL-6, TNF-α, ZO-1 and occludin, PI3K, AKT, p-AKT, AQP4, and miR-7-5p were analyzed in the rat brains. Result: The blood neutrophil-lymphocyte ratio (NLR) on day 1 was associated with the area of brain edema on day 7. The expression of miR-7-5p decreased after intracerebral hemorrhage, and as a result, the inhibition of the PI3K/AKT pathway was weakened. The decreased inhibition of the PI3K/AKT pathway resulted in an increase in AQP4 expression, which further aggravated brain edema. NBP can upregulate the expression of miR-7-5p, affecting these pathways to reduce brain edema. Conclusion: After intracerebral hemorrhage, miR-7-5p expression in brain tissue is reduced, which may increase the expression of AQP4 by activating the PI3K/AKT pathway. NBP can inhibit this process and reduce brain edema.
Collapse
Affiliation(s)
- Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijun Ren
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiliu Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Nie
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Zhang H, Song J, Dai H, Liu Y, Wang L. Effects of puerarin on the pharmacokinetics of astragaloside IV in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2020; 58:328-332. [PMID: 32356474 PMCID: PMC7241478 DOI: 10.1080/13880209.2020.1746362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/17/2020] [Indexed: 05/27/2023]
Abstract
Context: Puerarin and astragaloside IV (AS-IV) are sometimes used together for the treatment of disease in Chinese clinics, however, the drug-drug interaction between puerarin and AS-IV is still unknown.Objective: This study investigates the effects of puerarin on the pharmacokinetics of astragaloside IV in rats and clarifies its main mechanism.Materials and methods: The pharmacokinetic profiles of oral administration of astragaloside IV (20 mg/kg) in Sprague-Dawley rats, with or without pre-treatment of puerarin (100 mg/kg/day for 7 days) were investigated. The effects of puerarin on the transport and metabolic stability of AS-IV were also investigated using Caco-2 cell transwell model and rat liver microsomes.Results: The results showed that puerarin could significantly increase the peak plasma concentration (from 48.58 ± 7.26 to 72.71 ± 0.62 ng/mL), and decrease the oral clearance (from 47.5 ± 8.91 to 27.15 ± 9.27 L/h/kg) of AS-IV. The Caco-2 cell transwell experiments indicated that puerarin could decrease the efflux ratio of astragaloside IV from 1.89 to 1.26, and the intrinsic clearance rate of astragaloside IV was decreased by the pre-treatment with puerarin (34.8 ± 2.9 vs. 41.5 ± 3.8 μL/min/mg protein).Discussion and conclusions: These results indicated that puerarin could significantly change the pharmacokinetic profiles of astragaloside IV, via increasing the absorption of astragaloside IV or inhibiting the metabolism of astragaloside IV in rats.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jiaying Song
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Huizhen Dai
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanchao Liu
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Lili Wang
- Operating Room, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
7
|
Gao J, Zeng X, Zhao W, Chen D, Liu J, Zhang N, Duan X. Influence of astragaloside IV on pharmacokinetics of triptolide in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2020; 58:253-256. [PMID: 32233814 PMCID: PMC7170367 DOI: 10.1080/13880209.2019.1702705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/02/2023]
Abstract
Context: It is common to combine two or more drugs in clinics in China. Triptolide (TP) has been used primarily for the treatment of inflammatory and autoimmune diseases. Astragaloside IV (AS-IV) has been applied with many other drugs, due to its various pharmacological effects. AS-IV and TP can be used together for the treatment of diseases in clinics in China.Objective: This study investigates the effects of astragaloside IV (AS-IV) on the pharmacokinetics of TP in rats and its potential mechanism.Materials and methods: The pharmacokinetics of orally administered triptolide (2 mg/kg) with or without AS-IV pre-treatment (100 mg/kg/day for 7 d) were investigated. Additionally, the effects of AS-IV on the transport of triptolide were investigated using the Caco-2 cell transwell model.Results: The results indicated that when the rats were pre-treated with AS-IV, the Cmax of triptolide decreased from 418.78 ± 29.36 to 351.31 ± 38.88 ng/mL, and the AUC0-t decreased from 358.83 ± 19.56 to 252.23 ± 15.75 μg/h/L. The Caco-2 cell transwell experiments indicated that AS-IV could increase the efflux ratio of TP from 2.37 to 2.91 through inducing the activity of P-gp.Discussion and conclusions: In conclusion, AS-IV could decrease the system exposure of triptolide when they are co-administered, and it might work through decreasing the absorption of triptolide by inducing the activity of P-gp.
Collapse
Affiliation(s)
- Jian Gao
- Department of Image, Yidu Central Hospital of Weifang, Shandong, China
| | - Xiangmin Zeng
- Department of Image, Yidu Central Hospital of Weifang, Shandong, China
| | - Wei Zhao
- Department of Ultrasonography, Yidu Central Hospital of Weifang, Shandong, China
| | - Desheng Chen
- Department of Image, Yidu Central Hospital of Weifang, Shandong, China
| | - Jing Liu
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Shandong, China
| | - Ning Zhang
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Shandong, China
| | - Xingliang Duan
- Department of Emergency, Weifang People’s Hospital, Shandong, China
| |
Collapse
|
8
|
Liu W, Liu G, Liu J. Effects of astragaloside IV on the pharmacokinetics of omeprazole in rats. PHARMACEUTICAL BIOLOGY 2019; 57:449-452. [PMID: 31290355 PMCID: PMC6691885 DOI: 10.1080/13880209.2019.1636828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/22/2019] [Indexed: 05/20/2023]
Abstract
Context: Omeprazole and astragaloside IV (AS-IV) are widely used for the treatment of gastric ulcers in China clinics. Objective: This study investigates the effects of AS-IV on the pharmacokinetics of omeprazole in rats. Materials and methods: The pharmacokinetics of orally administered omeprazole (2 mg/kg), with or without AS-IV (100 mg/kg/day for 7 days) pretreatment, were investigated in male Sprague-Dawley rats (two groups of six animals each) using LC-MS/MS. A Caco-2 cell transwell model and rat liver microsome incubation systems were also used to support the in vivo pharmacokinetic data and investigate its potential mechanism. Results: The results indicated that co-administration of AS-IV could decrease the systemic exposure of omeprazole significantly (p < 0.05), including AUC0-t (717.20 ± 177.63 vs. 1166.25 ± 186.65 ng h/mL) and Cmax (272.35 ± 25.81 vs. 366.34 ± 32.57 ng/mL). The t1/2 of omeprazole also decreased significantly (1.78 ± 0.15 vs. 2.23 ± 0.27 h, p < 0.05). The efflux ratio of omeprazole across the Caco-2 cell transwell model increased significantly from 1.73 to 2.67 (p < 0.05), and the metabolic stability of omeprazole was decreased from 42.6 ± 7.8 to 26.2 ± 5.1 min with the pretreatment of AS-IV (p < 0.05). Discussion and conclusions: AS-IV could decrease the systemic exposure of omeprazole in rats when AS-IV and omeprazole were co-administered, and it might exert these effects through decreasing the absorption of omeprazole by inducing P-gp, or through accelerating the metabolism of omeprazole in rat liver by inducing the activity of CYP3A4.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, China
- CONTACT Wei Liu Department of Pediatric Medicine, Yidu Central Hospital of Weifang, No.4138, South Linglongshan Road, Shandong 262500, China
| | - Guozhi Liu
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, China
| | - Jing Liu
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|
9
|
Zhao H, Zhang Y, Liu B, Li L, Zhang L, Bao M, Guo H, Xu H, Feng H, Xiao L, Yi W, Yi J, Chen P, Lu C, Lu A. Identification of Characteristic Autoantibodies Associated With Deficiency Pattern in Traditional Chinese Medicine of Rheumatoid Arthritis Using Protein Chips. Front Pharmacol 2019; 10:755. [PMID: 31354478 PMCID: PMC6635584 DOI: 10.3389/fphar.2019.00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is an autoimmune disease. Based on traditional Chinese medicine (TCM) theory, deficiency pattern (DP) which leads to specific treatment principles in clinical management is a crucial pattern diagnosis among RA patients, and autoantibodies have potential implications in TCM pattern classification. The purpose of this study was to identify specific RA DP-associated autoantibodies. Methods: RA DP patients, RA nondeficiency pattern (NDP) patients and healthy controls (HCs) were recruited for this study. Then, clinical data and sera from all subjects were collected. After that, the sera were probed with protein chips, which were constructed by known RA related autoantigens, to screen for DP-associated candidate autoantibodies. Lastly, candidate autoantibodies were validated via enzyme-linked immunosorbent assay (ELISA) and function was evaluated by network analysis. Results: Protein chips results showed that RA patients have higher levels of anti-vascular endothelial growth factor (VEGF) A165 antibodies than HC (P < 0.005); anti-VEGFA165 antibodies levels of patients with RA DP were lower than patients with RA NDP (P < 0.05). The results of the ELISA also showed statistically significant differences in anti-VEGFA165 antibodies between the RA and HC group (P < 0.0001); and there were statistically significant differences in anti-VEGFA165 antibodies between the RA DP and RA NDP group (P < 0.05). Network analysis results suggested IL-6 signaling pathway has a significant effect on VEGFA165 in RA patients. Conclusion: Autoantibodies identification in RA using protein chips help in understanding DP in TCM. Discovery of anti-VEGFA165 antibodies may provide the possibility for clinical precision treatment.
Collapse
Affiliation(s)
- Heru Zhao
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Zhang
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Zhang
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mei Bao
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongtao Guo
- Department of Rheumatology, First Affiliated Hospital of Henan University of TCM, Zhengzhou, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Feng
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Lianbo Xiao
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Wenjun Yi
- China Association of Acupunture and Moxibustion, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
10
|
Metabolomics Research Reveals the Mechanism of Action of Astragalus Polysaccharide in Rats with Digestive System Disorders. Molecules 2018; 23:molecules23123333. [PMID: 30558291 PMCID: PMC6321338 DOI: 10.3390/molecules23123333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
With the diversity of modern dietary lifestyles, digestive system disorders (DSD) have become a frequently occurring disease in recent years. Astragalus polysaccharide (APS) is a homogeneous polysaccharide extracted from Astragalus, which might ameliorate the digestive and absorptive functions. However, the treatment mechanisms remain unclear. In this study, rats with DSD were fed a high-fat⁻low-protein diet and subjected to weight-bearing swimming until exhaustion. When body weight and autonomous activities of the rats decreased, they were administered APS. After two weeks, serum metabolomics analysis based on LC-MS was performed to validate the therapeutic effect of APS and explore its mechanism. APS pharmacodynamics was determined in this study, and serum metabolomics analysis discovered and identified 16 significant, differentially produced metabolites involved in energy, amino acid, and lipid metabolism, including citric acid, lactic acid, alanine, phosphatidylcholine, phenylalanine. After treatment with APS, the levels of the above small-molecule metabolites were reversed. Our results show the efficacy of APS in DSD treatment through the regulation of perturbed metabolic pathways related to energy, amino acid, and lipid metabolism.
Collapse
|
11
|
Zuo X, Chen Q, Li H, Zhang K, Wang K, Tu Y, Hu M, Cui F, Liu Y. Effects of Chahuangjing on Decorporation and Radiation Protection Against Tritiated Water. Dose Response 2018; 16:1559325818810650. [PMID: 30505249 PMCID: PMC6256306 DOI: 10.1177/1559325818810650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was to investigate the effects of Chahuangjing, a novel traditional Chinese medicinal compound, on decorporation and radiation protection against tritiated water (HTO). Sixty male specific-pathogen-free-grade C57BL/6J mice were randomly divided into 12 groups: mice in 4 control groups were intraperitoneally injected with sterile water; mice in 4 HTO groups were intraperitoneally injected with 11.1 × 105 Bq/g of HTO; and mice in the other 4 groups were administered with HTO and a Chahuangjing compound (0.2 mL, once daily). After 1, 7, 14, and 21 days, the mice were killed and samples were collected. A liquid scintillation counting method was used for tritium measurement. A fully automated hematology analyzer was used to assess blood samples. The superoxide dismutase (SOD) and malondialdehyde (MDA) content was analyzed using commercial kits. Chahuangjing significantly increased decorporation and shortened the effective half-life of tritium. To a certain extent, Chahuangjing alleviated the HTO-induced reduction in white blood cells and elevated red blood cells after HTO exposure. Moreover, Chahuangjing alleviated the HTO-induced reduction in SOD activity and reduced MDA. Our study demonstrated that Chahuangjing can enhance the elimination of tritium and reduce free radicals to alleviate HTO-induced radiation injury.
Collapse
Affiliation(s)
- Xueyong Zuo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Digestive Disease, the Third affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Houwen Li
- Health Physics Department, CNNP Nuclear Power Operations Management Co., Ltd., Haiyan, Zhejiang, China
| | - Ke Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Kongzhao Wang
- Health Physics Department, CNNP Nuclear Power Operations Management Co., Ltd., Haiyan, Zhejiang, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Mingjiang Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yulong Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China.,Department of Oncology, the Second Affiliated Hospital of Suzhou University, Suzhou 215004, China
| |
Collapse
|
12
|
The Effects of Radix Astragali Water Abstract on Energy Metabolism in Rat Yang-Deficiency Cold Syndrome Model through PPAR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9194362. [PMID: 30519272 PMCID: PMC6241352 DOI: 10.1155/2018/9194362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/09/2018] [Indexed: 12/23/2022]
Abstract
Radix Astragali (RA) herb with warm property and significant “tonifying qi” effects is indicated for the syndrome of internal cold due to Yang deficiency. The purpose of this research was to explore effects of Radix Astragali (RA) through PPAR signaling pathway on gene expression profiles related to energy metabolism in rats with the Yang-deficiency cold (YDC) syndrome, for identifying the pathological mechanism of Yang-deficiency cold (YDC) syndrome and the effects mechanism of RA. The results indicated that RA could significantly increase body weight (BM), cold and heat tendency (CT), overall temperature (OT), rectum temperature (RT), toe temperature (TT), energy intake (EI), and V(O2)/V(CO2) ratio (which indicates basal metabolism, BM) (P<0.05), enhancing the depressed metabolic function in YDC syndrome model rat. Our data also indicated differentially expressed genes (DEGs) related to energy metabolism involving lipids, carbohydrates, and amino acids metabolic process; the expression of CPT-1 and FABP4 (ap2) was improved; PPAR, Glycolysis, Wnt, cAMP, MAPK, AMPK, and fatty acid degradation signaling pathway may be related to energy metabolism. However, the Chinese herbal medicine RA plays a certain role in promoting the metabolism of substances and energy in rats by its warming and beneficial effect. Our results suggest that the mechanism underlying the function of RA may take effect through the regulation of PPAR signaling pathway and related gene expression. Lipids, carbohydrates, and amino acids metabolic process may be affected to adjust the reduced metabolic function in the model animals. In general, results indicate that RA could promote energy metabolism in rats with the YDC syndrome via PPAR signaling pathway regulating the expression of CPT-1 and FABP4 (ap2), which reflected the warm and qi tonifying properties of RA.
Collapse
|