1
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
2
|
Tabaac BJ, Shinozuka K, Arenas A, Beutler BD, Cherian K, Evans VD, Fasano C, Muir OS. Psychedelic Therapy: A Primer for Primary Care Clinicians-Psilocybin. Am J Ther 2024; 31:e121-e132. [PMID: 38518269 DOI: 10.1097/mjt.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND The primary psychoactive drug in magic mushrooms, psilocybin, induces profound alterations in consciousness through the 5-HT2A receptor. This review consolidates current research findings to elucidate the pharmacology, safety profile, and clinical applications of psilocybin. AREAS OF UNCERTAINTY Despite initial concerns that psilocybin could cause psychosis, contemporary research has demonstrated that psilocybin is generally safe. The most common adverse effects are nausea and headache, yet both tend to be transient. Serious adverse events can generally be avoided in controlled settings such as clinical trials. However, in the largest clinical trial to date, there were a total of 7 reported cases of suicidal ideation, up to 12 weeks after receiving a single 25 mg dose of psilocybin. That being said, all 7 cases did not respond to the treatment. Although selective serotonin reuptake inhibitors may blunt the hallucinogenic qualities of psilocybin, preliminary research suggests that they may enhance its antidepressant effects. THERAPEUTIC ADVANCES In clinical trials, psilocybin has shown promise for treating major depressive disorder and treatment-resistant depression. Initial studies indicated that 42%-57% of patients underwent remission after psilocybin-assisted therapy, which suggests that psilocybin is more effective than existing antidepressant medications. Clinical data have also demonstrated that psilocybin can manage substance use disorders and end-of-life anxiety with clinical outcomes that are sustained for months and sometimes years after 1 or 2 doses. LIMITATIONS However, larger Phase II trials with more than 100 depressed participants have shown a much smaller remission rate of 25%-29%, though these studies still observed that psilocybin causes a significant reduction in depressive symptoms. CONCLUSIONS Aside from ketamine, psilocybin is the most clinically well-researched psychedelic drug, with trials that have enrolled hundreds of participants and multiple therapeutic applications. Phase III trials will determine whether psilocybin lives up to the promise that it showed in previous clinical trials.
Collapse
Affiliation(s)
- Burton J Tabaac
- Reno School of Medicine, University of Nevada, Reno, NV
- Department of Neurology, Carson Tahoe Health, Carson City, NV
| | - Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Alejandro Arenas
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA
| | - Bryce D Beutler
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kirsten Cherian
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA
| | - Viviana D Evans
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Owen S Muir
- Fermata Health, Brooklyn, NY; and
- Acacia Clinics, Sunnyvale, CA
| |
Collapse
|
3
|
Sloan M, Andreoli L, Zandi MS, Harwood R, Pitkanen M, Sloan S, Barrere C, Massou E, Wincup C, Bosley M, Naughton F, Ubhi M, Jayne D, Leschziner G, Brimicombe J, Diment W, Middleton K, Gordon C, D’Cruz D, Pollak TA. Attribution of neuropsychiatric symptoms and prioritisation of evidence in the diagnosis of neuropsychiatric lupus: mixed methods analysis of patient and clinician perspectives from the international INSPIRE study. Rheumatology (Oxford) 2023; 63:kead685. [PMID: 38105443 PMCID: PMC11636626 DOI: 10.1093/rheumatology/kead685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVE Neuropsychiatric lupus (NPSLE) is challenging to diagnose. Many neuropsychiatric symptoms, such as headache and hallucinations, cannot be verified by tests or clinician assessment. We investigated prioritisations of methods for diagnosing NPSLE and attributional views. METHODS Thematic and comparative analyses were used to investigate how clinicians prioritise sources of evidence from a 13-item list, and explore discordances in clinician and patient perspectives on attribution. RESULTS We identified high levels of variability and uncertainty in clinicians' assessments of neuropsychiatric symptoms in SLE patients. In attributional decisions, clinicians (surveys n = 400, interviews n = 50) ranked clinicians' assessments above diagnostic tests (many of which they reported were often unenlightening in NPSLE). Clinicians ranked patient opinion of disease activity last, and 46% of patients reported never/rarely having been asked if their SLE was flaring, despite experienced patients often having "attributional insight". SLE Patients (surveys n = 676, interviews n = 27) estimated higher attributability of neuropsychiatric symptoms to the direct effects of SLE on the nervous system than clinicians (p < 0.001 for all symptoms excluding mania), and 24% reported that their self-assessment of disease activity was never/rarely concordant with their clinicians. Reports of misattributions were common, particularly of non-verifiable diffuse symptoms. Terminology differed between clinicians and influenced attribution estimates. CONCLUSION NPSLE diagnostic tests and clinician assessments have numerous limitations, particularly in detecting diffuse neuropsychiatric symptoms that can be directly attributable and benefit from immunosuppression. Our findings suggest that incorporating patient attributional insights-although also subject to limitations-may improve attribution decision-making. Consensus regarding terminology and interpretations of "direct attributability" is required.
Collapse
Affiliation(s)
- Melanie Sloan
- Department of Public Health and Primary Care Unit, University of Cambridge, Cambridge, UK
| | - Laura Andreoli
- Unit of Rheumatology and Clinical Immunology, ASST Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Michael S Zandi
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Mervi Pitkanen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, and South London and Maudsley NHS Foundation trust, London, UK
| | - Sam Sloan
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | - Efthalia Massou
- Department of Public Health and Primary Care Unit, University of Cambridge, Cambridge, UK
| | - Chris Wincup
- Department of Rheumatology, Kings College Hospital London, London, UK
| | | | - Felix Naughton
- Behavioural and Implementation Science Group, School of Health Sciences, University of East Anglia, Norwich, UK
| | - Mandeep Ubhi
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Guy Leschziner
- Department of Neurology, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK
| | - James Brimicombe
- Department of Public Health and Primary Care Unit, University of Cambridge, Cambridge, UK
| | | | | | - Caroline Gordon
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David D’Cruz
- The Louise Coote Lupus Unit, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Thomas A Pollak
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, and South London and Maudsley NHS Foundation trust, London, UK
| |
Collapse
|
4
|
de Oliveira EG, de Lima DA, da Silva Júnior JC, de Souza Barbosa MV, de Andrade Silva SC, de Santana JH, Dos Santos Junior OH, Lira EC, Lagranha CJ, Duarte FS, Gomes DA. (R)-ketamine attenuates neurodevelopmental disease-related phenotypes in a mouse model of maternal immune activation. Eur Arch Psychiatry Clin Neurosci 2023; 273:1501-1512. [PMID: 37249625 DOI: 10.1007/s00406-023-01629-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Infections during pregnancy are associated with an increased risk of neuropsychiatric disorders with developmental etiologies, such as schizophrenia and autism spectrum disorders (ASD). Studies have shown that the animal model of maternal immune activation (MIA) reproduces a wide range of phenotypes relevant to the study of neurodevelopmental disorders. Emerging evidence shows that (R)-ketamine attenuates behavioral, cellular, and molecular changes observed in animal models of neuropsychiatric disorders. Here, we investigate whether (R)-ketamine administration during adolescence attenuates some of the phenotypes related to neurodevelopmental disorders in an animal model of MIA. For MIA, pregnant Swiss mice received intraperitoneally (i.p.) lipopolysaccharide (LPS; 100 µg/kg/day) or saline on gestational days 15 and 16. The two MIA-based groups of male offspring received (R)-ketamine (20 mg/kg/day; i.p.) or saline from postnatal day (PND) 36 to 50. At PND 62, the animals were examined for anxiety-like behavior and locomotor activity in the open-field test (OFT), as well as in the social interaction test (SIT). At PND 63, the prefrontal cortex (PFC) was collected for analysis of oxidative balance and gene expression of the cytokines IL-1β, IL-6, and TGF-β1. We show that (R)-ketamine abolishes anxiety-related behavior and social interaction deficits induced by MIA. Additionally, (R)-ketamine attenuated the increase in lipid peroxidation and the cytokines in the PFC of the offspring exposed to MIA. The present work suggests that (R)-ketamine administration may have a long-lasting attenuation in deficits in emotional behavior induced by MIA, and that these effects may be attributed to its antioxidant and anti-inflammatory activity in the PFC.
Collapse
Affiliation(s)
- Elifrances Galdino de Oliveira
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil.
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Diógenes Afonso de Lima
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - José Carlos da Silva Júnior
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Mayara Victória de Souza Barbosa
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Severina Cassia de Andrade Silva
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Jonata Henrique de Santana
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Osmar Henrique Dos Santos Junior
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Eduardo Carvalho Lira
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Filipe Silveira Duarte
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Dayane Aparecida Gomes
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
5
|
Rathod SS, Agrawal YO, Nakhate KT, Meeran MFN, Ojha S, Goyal SN. Neuroinflammation in the Central Nervous System: Exploring the Evolving Influence of Endocannabinoid System. Biomedicines 2023; 11:2642. [PMID: 37893016 PMCID: PMC10604915 DOI: 10.3390/biomedicines11102642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including those with pro-inflammatory functions, in the outer regions. While neuronal inflammation is common in various central nervous system disorders, the specific inflammatory pathways linked with different immune-mediated cell types and the various factors influencing the blood-brain barrier significantly contribute to disease-specific characteristics. The endocannabinoid system consists of cannabinoid receptors, endogenous cannabinoids, and enzymes responsible for synthesizing and metabolizing endocannabinoids. The primary cannabinoid receptor is CB1, predominantly found in specific brain regions such as the brainstem, cerebellum, hippocampus, and cortex. The presence of CB2 receptors in certain brain components, like cultured cerebellar granular cells, Purkinje fibers, and microglia, as well as in the areas like the cerebral cortex, hippocampus, and cerebellum is also evidenced by immunoblotting assays, radioligand binding, and autoradiography studies. Both CB1 and CB2 cannabinoid receptors exhibit noteworthy physiological responses and possess diverse neuromodulatory capabilities. This review primarily aims to outline the distribution of CB1 and CB2 receptors across different brain regions and explore their potential roles in regulating neuroinflammatory processes.
Collapse
Affiliation(s)
- Sumit S. Rathod
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
- Department of Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Yogeeta O. Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| |
Collapse
|
6
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
7
|
Inflammatory cytokines in and cognitive function of adolescents with first-episode schizophrenia, bipolar disorder, or major depressive disorder. CNS Spectr 2023; 28:70-77. [PMID: 34664544 DOI: 10.1017/s1092852921000857] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Few studies have explored the complex relationship of pro- and anti-inflammatory cytokines with cognitive function in adolescents with first-episode schizophrenia, bipolar disorder, or major depressive disorder. METHODS In total, 26, 35, and 29 adolescents with first-episode schizophrenia, bipolar disorder, and major depressive disorder, respectively, and 22 age- and sex-matched controls were included in the current study. Cytokines, namely interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-α, and C-reactive protein (CRP), were assessed. The Wisconsin Card Sorting Test (WCST) and the working memory task were administered to assess cognitive function. RESULTS Using generalized linear models with adjustment for demographic data and clinical symptoms, patients with bipolar disorder were found to exhibit the highest levels of CRP (P = .023), IL-6 (P = .022), and TNF-α (P = .011), and had the lowest IL-2 levels (P = .034) among the four groups. According to the results of the WCST and working memory task, adolescents with schizophrenia exhibited the lowest performance in cognitive function. In addition, among the assessed cytokines, only CRP levels (P = .027) were negatively associated with WCST scores. DISCUSSION Dysregulated pro- and anti-inflammatory cytokines and impaired cognitive functioning were observed in first-episode adolescent-onset schizophrenia, bipolar disorder, and major depressive disorder. The altered cytokine profiles may play important roles in the pathophysiology of schizophrenia, bipolar disorder, and major depressive disorder.
Collapse
|
8
|
Sinyak DS, Bukov GA, Sizov VV, Zubareva OE, Amakhin DV, Zaitsev AV. A Minimally Invasive Method of Wireless Electroencephalogram Recording in Rats in a Lithium-Pilocarpine Model of Epilepsy. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Unnisa A, Greig NH, Kamal MA. Modelling the Interplay Between Neuron-Glia Cell Dysfunction and Glial Therapy in Autism Spectrum Disorder. Curr Neuropharmacol 2023; 21:547-559. [PMID: 36545725 PMCID: PMC10207919 DOI: 10.2174/1570159x21666221221142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complicated, interpersonally defined, static condition of the underdeveloped brain. Although the aetiology of autism remains unclear, disturbance of neuronglia interactions has lately been proposed as a significant event in the pathophysiology of ASD. In recent years, the contribution of glial cells to autism has been overlooked. In addition to neurons, glial cells play an essential role in mental activities, and a new strategy that emphasises neuron-glia interactions should be applied. Disturbance of neuron-glia connections has lately been proposed as a significant event in the pathophysiology of ASD because aberrant neuronal network formation and dysfunctional neurotransmission are fundamental to the pathology of the condition. In ASD, neuron and glial cell number changes cause brain circuits to malfunction and impact behaviour. A study revealed that reactive glial cells result in the loss of synaptic functioning and induce autism under inflammatory conditions. Recent discoveries also suggest that dysfunction or changes in the ability of microglia to carry out physiological and defensive functions (such as failure in synaptic elimination or aberrant microglial activation) may be crucial for developing brain diseases, especially autism. The cerebellum, white matter, and cortical regions of autistic patients showed significant microglial activation. Reactive glial cells result in the loss of synaptic functioning and induce autism under inflammatory conditions. Replacement of defective glial cells (Cell-replacement treatment), glial progenitor cell-based therapy, and medication therapy (inhibition of microglia activation) are all utilised to treat glial dysfunction. This review discusses the role of glial cells in ASD and the various potential approaches to treating glial cell dysfunction.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Peterlee place, Hebersham, NSW 2770, Australia
| |
Collapse
|
10
|
Song JJ, Li H, Wang N, Zhou XY, Liu Y, Zhang Z, Feng Q, Chen YL, Liu D, Liang J, Ma XY, Wen XR, Fu YY. Gastrodin ameliorates the lipopolysaccharide-induced neuroinflammation in mice by downregulating miR-107-3p. Front Pharmacol 2022; 13:1044375. [PMID: 36569291 PMCID: PMC9773390 DOI: 10.3389/fphar.2022.1044375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Neuroinflammation plays a pivotal role in the pathogenesis of Central Nervous System (CNS) diseases. The phenolic glucoside gastrodin (GAS), has been known to treat CNS disorders by exerting anti-inflammatory activities. Our aim was to investigate the potential neuroprotective mechanisms of GAS on lipopolysaccharide (LPS)-induced mice. Methods: Male C57BL/6J mice were treated by LPS, before which GAS was adminisrated. The behavior tests such as forced swim test, tail suspension test, and elevated plus maze were performed to evaluate depressive-anxiety-like behaviors. A high-throughput sequencing (HTS) analysis was performed to screen out distinctive miRNAs which were validated using quantitative real-time PCR. Then, miRNA agomir or NC was injected stereotaxically into hippocampus of mice to explore the role of miRNA on GAS in response to LPS. Furthermore, Immunofluorescence and the hematoxylin and eosin (H&E) staining were employed to observe the cellular morphology. The protein levels of pro-inflammatory factors were evaluated by western blot. Finally, the target mRNA of miRNA was predicted using bioinformatics analysis. GO and KEGG enrichment analyses were conducted to clarify the potential function of target protein, which were visualized by bubble charts. Results: The behavioral data showed that mice in the LPS group had obvious depressive-anxiety-like behaviors, and 100 mg/kg GAS could improve these behavioral changes and alleviate the levels of pro-inflammatory cytokines in the hippocampus when mice were exposed to LPS for 6 h. Meanwhile, LPS-induced microglia and astrocyte activation in the CA1, CA2, CA3, and DG regions of the hippocampus were also reversed by GAS. Furthermore, miR-107-3p were screened out and verified for GAS in response to LPS. Importantly, miR-107-3p overexpression negatively abrogated the neuroprotective effects of GAS. Moreover, KPNA1 might be the target molecular of miR-107-3p. KPNA1 might regulate 12 neuroinflammation-related genes, which were mainly involved in cytokine-mediated signaling pathway. Conclusion: These results suggested that GAS might alleviate the LPS-induced neuroinflammation and depressive-anxiety-like behaviors in mice by downregulating miR-107-3p and upregulating the downstream target KPNA1. The indicates miR-107-3p may provide a new strategy for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jin-Jin Song
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Hui Li
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yan Zhou
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yan Liu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zhen Zhang
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Feng
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Ling Chen
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia Liang
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Yu Ma
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Ru Wen
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Xiang-Ru Wen, ; Yan-Yan Fu,
| | - Yan-Yan Fu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Xiang-Ru Wen, ; Yan-Yan Fu,
| |
Collapse
|
11
|
Practical applications of grounding to support health. Biomed J 2022; 46:41-47. [PMID: 36481428 PMCID: PMC10105020 DOI: 10.1016/j.bj.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
An ever expanding body of research over the past several decades suggest that directly touching the earth, a practice known as grounding, puts the body into a healing state. The natural universe conducts an energy current known as a direct current (DC). This DC circuit of energy flows through everything on our planet, including plants, animals, human beings, and the surface of our entire globe, creating a global electrical circuit. DC energy is also what the living human body uses to function, as everything from the beating of our heart to the movement of our muscles to our brain's ability to think operates using DC energy. The earth's DC energy flows continuously across the earth's crust, and anything conductive that touches the earth becomes part of this natural circuit. Our human bodies, which are highly conductive, join this global electrical circuit whenever we make direct contact with the earth, a practice known as grounding. Medical studies are revealing that by becoming a part of the global electrical circuit, through grounding, the human body enters a profound healing state. As our understanding of the health benefits of grounding continue to deepen, we can begin to use grounding as an intentional healing tool in clinical medicine. Grounding may play a role in not only improving the body's natural ability to function, but may also play a role in the healing of disease and the prevention of disease development in the first place. Studies so far suggest that becoming a part of the earth's global DC circuit enhances our conductive health, which has far reaching implications to all our organ systems that utilize DC energy and conductivity to work, including but not limited to: our central and peripheral nervous system, our musculoskeletal system, and our cardiovascular system. Further research into the healing properties of grounding will help clinicians tailor suggestions for specific health issues, and will help us understand the role of our body's conductivity in the presence of our global electrical circuit.
Collapse
|
12
|
Hassan AHE, Kim HJ, Gee MS, Park JH, Jeon HR, Lee CJ, Choi Y, Moon S, Lee D, Lee JK, Park KD, Lee YS. Positional scanning of natural product hispidol's ring-B: discovery of highly selective human monoamine oxidase-B inhibitor analogues downregulating neuroinflammation for management of neurodegenerative diseases. J Enzyme Inhib Med Chem 2022; 37:768-780. [PMID: 35196956 PMCID: PMC8881063 DOI: 10.1080/14756366.2022.2036737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/03/2022] Open
Abstract
Multifunctional molecules might offer better treatment of complex multifactorial neurological diseases. Monoaminergic pathways dysregulation and neuroinflammation are common convergence points in diverse neurodegenerative and neuropsychiatric disorders. Aiming to target these diseases, polypharmacological agents modulating both monoaminergic pathways and neuroinflammatory were addressed. A library of analogues of the natural product hispidol was prepared and evaluated for inhibition of monoamine oxidases (MAOs) isoforms. Several molecules emerged as selective potential MAO B inhibitors. The most promising compounds were further evaluated in vitro for their impact on microglia viability, induced production of proinflammatory mediators and MAO-B inhibition mechanism. Amongst tested compounds, 1p was a safe potent competitive reversible MAO-B inhibitor and inhibitor of microglial production of neuroinflammatory mediators; NO and PGE2. In-silico study provided insights into molecular basis of the observed selective MAO B inhibition. This study presents compound 1p as a promising lead compound for management of neurodegenerative disease.
Collapse
Affiliation(s)
- Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hye Rim Jeon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Cheol Jung Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Yeonwoo Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Suyeon Moon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Sah A, Rooney S, Kharitonova M, Sartori SB, Wolf SA, Singewald N. Enriched Environment Attenuates Enhanced Trait Anxiety in Association with Normalization of Aberrant Neuro-Inflammatory Events. Int J Mol Sci 2022; 23:13052. [PMID: 36361832 PMCID: PMC9657487 DOI: 10.3390/ijms232113052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation is discussed to play a role in specific subgroups of different psychiatric disorders, including anxiety disorders. We have previously shown that a mouse model of trait anxiety (HAB) displays enhanced microglial density and phagocytic activity in key regions of anxiety circuits compared to normal-anxiety controls (NAB). Using minocycline, we provided causal evidence that reducing microglial activation within the dentate gyrus (DG) attenuated enhanced anxiety in HABs. Besides pharmacological intervention, "positive environmental stimuli", which have the advantage of exerting no side-effects, have been shown to modulate inflammation-related markers in human beings. Therefore, we now investigated whether environmental enrichment (EE) would be sufficient to modulate upregulated neuroinflammation in high-anxiety HABs. We show for the first time that EE can indeed attenuate enhanced trait anxiety, even when presented as late as adulthood. We further found that EE-induced anxiolysis was associated with the attenuation of enhanced microglial density (using Iba-1 as the marker) in the DG and medial prefrontal cortex. Additionally, EE reduced Iba1 + CD68+ microglia density within the anterior DG. Hence, the successful attenuation of trait anxiety by EE was associated in part with the normalization of neuro-inflammatory imbalances. These results suggest that pharmacological and/or positive behavioral therapies triggering microglia-targeted anti-inflammatory effects could be promising as novel alternatives or complimentary anxiolytic therapeutic approaches in specific subgroups of individuals predisposed to trait anxiety.
Collapse
Affiliation(s)
- Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Sinead Rooney
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Simone B. Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Susanne A. Wolf
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Department of Experimental Ophthalmology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| |
Collapse
|
14
|
Onisiforou A, Spyrou GM. Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders. Viruses 2022; 14:2270. [PMID: 36298824 PMCID: PMC9611753 DOI: 10.3390/v14102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.
Collapse
Affiliation(s)
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
15
|
Bhikram T, Sandor P. Neutrophil-lymphocyte ratios as inflammatory biomarkers in psychiatric patients. Brain Behav Immun 2022; 105:237-246. [PMID: 35839998 DOI: 10.1016/j.bbi.2022.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022] Open
Abstract
PURPOSE There is a growing amount of evidence to suggest that inflammation may have a role in the onset and prognosis of psychiatric disorders. We reviewed the literature of studies investigating neutrophil-lymphocyte ratios (NLR), a biomarker of inflammation, in both adult and youth psychiatric populations. The limitations of NLR, in addition to the potential mechanisms underlying its relationship with psychiatric disorders, are also discussed. RECENT FINDINGS Unlike in the general population, NLR is elevated in a proportion of adult patients with schizophrenia, major depressive disorder and bipolar disorder, though associations with symptom severity and other clinical parameters are less clear. When compared to baseline, reductions in NLR are sometimes reported after treatment and remission. Results in youth populations largely resemble findings obtained from adult samples, even though youth studies are far fewer in number. SUMMARY The consistent findings of elevated NLR across the reviewed psychiatric disorders suggest that abnormal NLR is not specific to any one disorder but may reflect a pathological brain process that leads to brain dysfunction. These findings support hypotheses of neuroinflammation being important to the etiology of psychiatric disorders. More research is needed to further elucidate the relationship between specific diagnostic and behavioural constructs and NLR. Future work is also needed to determine the specific neuroinflammatory mechanisms that give rise to specific disorders.
Collapse
Affiliation(s)
- Tracy Bhikram
- Tourette Syndrome Neurodevelopmental Clinic, University Health Network, Toronto, Ontario, Canada.
| | - Paul Sandor
- Tourette Syndrome Neurodevelopmental Clinic, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Child Psychiatry, Department of Psychiatry, Youthdale Treatment Centers, Toronto, Ontario, Canada; Youthdale Treatment Centers, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Ma'arif B, Muslikh FA, Amalia D, Mahardiani A, Muchlasi LA, Riwanti P, Taek MM, Laswati H, Agil M. Metabolite Profiling of the Environmental-Controlled Growth of Marsilea crenata Presl. and Its In Vitro and In Silico Antineuroinflammatory Properties. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i3.3262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study was aimed to evaluate the metabolite contents and antineuroinflammatory potential of Marsilea crenata Presl. grown under a controlled environmental condition. The antineuroinflammatory test has been carried out in vitro using ethanolic extract of M. crenata leaves on HMC3 microglia cells. An in silico approach was applied to predict the active compounds of the extract. The HMC3 microglia cells were induced with IFNγ to create prolonged inflammatory conditions and then treated with 96% ethanolic extract of the M. crenata leaves of 62.5, 125, and 250 μg/mL. The expression of MHC II was analyzed using the ICC method with the CLSM instrument. Metabolites of the extract were profiled using UPLC-QToF-MS/MS instrument and MassLynx 4.1 software. In silico evaluation was conducted with molecular docking on 3OLS protein using PyRx 0.8 software, and physicochemical properties of the compounds were analyzed using SwissADME webtool. The ethanolic extract of M. crenata leaves could reduce the MHC II expression in HMC3 microglia cells in all concentrations with the values 97.458, 139.574, and 82.128 AU. The result of metabolite profiling found 79 compounds in the extract. In silico evaluation showed that 19 compounds gave agonist interaction toward 3OLS, and three met all parameters of physicochemical analysis. The ethanolic extract of the environmental-controlled growth of M. crenata leaves antineuroinflammatory activity on HMC3 microglia cells. The extract was predicted to contain some phytoestrogen compounds which act as 3OLS agonists.
Collapse
|
17
|
Inhibition of Monoacylglycerol Lipase by NSD1819 as an Effective Strategy for the Endocannabinoid System Modulation against Neuroinflammation-Related Disorders. Int J Mol Sci 2022; 23:ijms23158428. [PMID: 35955562 PMCID: PMC9369272 DOI: 10.3390/ijms23158428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory—a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent β-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.
Collapse
|
18
|
Anxiety-like behavior and microglial activation in the amygdala after acute neuroinflammation induced by microbial neuraminidase. Sci Rep 2022; 12:11581. [PMID: 35803999 PMCID: PMC9270343 DOI: 10.1038/s41598-022-15617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Short-term behavioral alterations are associated with infection and aid the recovery from sickness. However, concerns have raised that sustained behavioral disturbances after acute neuroinflammation could relate to neurological diseases in the long run. We aimed to explore medium- and long-term behavioral disturbances after acute neuroinflammation in rats, using a model based on the intracerebroventricular administration of the enzyme neuraminidase (NA), which is part of some pathogenic bacteria and viruses. Neurological and behavioral assessments were performed 2 and 10 weeks after the injection of NA, and neuroinflammation was evaluated by gene expression and histology. No alterations were observed regarding basic neurological functions or locomotor capacity in NA-injected rats. However, they showed a reduction in unsupported rearing, and increased grooming and freezing behaviors, which indicate anxiety-like behavior. A principal component analysis including a larger set of parameters further supported such anxiety-like behavior. The anxiety profile was observed 2 weeks after NA-injection, but not after 10 weeks. Concomitantly, the amygdala presented increased number of microglial cells showing a morphologic bias towards an activated state. A similar but subtler tendency was observed in hypothalamic microglia located in the paraventricular nucleus. Also, in the hypothalamus the pattern recognition receptor toll-like receptor 4 (TLR4) was slightly overexpressed 2 weeks after NA injection. These results demonstrate that NA-induced neuroinflammation provokes anxiety-like behavior in the medium term, which disappears with time. Concurrent microgliosis in the amygdala could explain such behavior. Further experiments should aim to explore subtle but long-lasting alterations observed 10 weeks after NA injection, both in amygdala and hypothalamus, as well as mild behavioral changes.
Collapse
|
19
|
Soliman TN, Mohammed DM, El-Messery TM, Elaaser M, Zaky AA, Eun JB, Shim JH, El-Said MM. Microencapsulation of Plant Phenolic Extracts Using Complex Coacervation Incorporated in Ultrafiltered Cheese Against AlCl3-Induced Neuroinflammation in Rats. Front Nutr 2022; 9:929977. [PMID: 35845781 PMCID: PMC9278961 DOI: 10.3389/fnut.2022.929977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
Plant-derived phenolic compounds have numerous biological effects, including antioxidant, anti-inflammatory, and neuroprotective effects. However, their application is limited because they are degraded under environmental conditions. The aim of this study was to microencapsulate plant phenolic extracts using a complex coacervation method to mitigate this problem. Red beet (RB), broccoli (BR), and spinach leaf (SL) phenolic extracts were encapsulated by complex coacervation. The characteristics of complex coacervates [zeta potential, encapsulation efficiency (EE), FTIR, and morphology] were evaluated. The RB, BR, and SL complex coacervates were incorporated into an ultrafiltered (UF) cheese system. The chemical properties, pH, texture profile, microstructure, and sensory properties of UF cheese with coacervates were determined. In total, 54 male Sprague–Dawley rats were used, among which 48 rats were administered an oral dose of AlCl3 (100 mg/kg body weight/d). Nutritional and biochemical parameters, including malondialdehyde, superoxide dismutase, catalase, reduced glutathione, nitric oxide, acetylcholinesterase, butyrylcholinesterase, dopamine, 5-hydroxytryptamine, brain-derived neurotrophic factor, and glial fibrillary acidic protein, were assessed. The RB, BR, and SL phenolic extracts were successfully encapsulated. The RB, BR, and SL complex coacervates had no impact on the chemical composition of UF cheese. The structure of the RB, BR, and SL complex coacervates in UF cheese was the most stable. The hardness of UF cheese was progressively enhanced by using the RB, BR, and SL complex coacervates. The sensory characteristics of the UF cheese samples achieved good scores and were viable for inclusion in food systems. Additionally, these microcapsules improved metabolic strategies and neurobehavioral systems and enhanced the protein biosynthesis of rat brains. Both forms failed to induce any severe side effects in any experimental group. It can be concluded that the microencapsulation of plant phenolic extracts using a complex coacervation technique protected rats against AlCl3-induced neuroinflammation. This finding might be of interest to food producers and researchers aiming to deliver natural bioactive compounds in the most acceptable manner (i.e., food).
Collapse
Affiliation(s)
- Tarek N. Soliman
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Dina Mostafa Mohammed
- Department of Nutrition and Food Sciences, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Tamer M. El-Messery
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Mostafa Elaaser
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed A. Zaky
- Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
- *Correspondence: Ahmed A. Zaky,
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Gwangju, South Korea
- Jae-Han Shim,
| | - Marwa M. El-Said
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
- Marwa M. El-Said,
| |
Collapse
|
20
|
Mishra A, Singh KP. Neurotensin agonist PD 149163 modulates the neuroinflammation induced by bacterial endotoxin lipopolysaccharide in mice model. Immunopharmacol Immunotoxicol 2022; 44:216-226. [PMID: 35166614 DOI: 10.1080/08923973.2022.2037628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The disruption of bidirectional communication between neuroendocrine and immune components by stressors leads to mental problems. The immunomodulation therapy of neuroinflammation-led psychiatric illness is an emerging area of research. Therefore, the present study aimed to evaluate immune modulation efficacy of PD 149163 (PD) against the lipopolysaccharide (LPS)-induced neuroinflammation. MATERIALS AND METHODS The Swiss albino mice (female/12 weeks) were divided into six groups (6 mice/group): (I) Control: 0.9% NaCl; (II) LPS: 1 mg/kg BW, for 5 days; (III) LPS + PD Low: LPS 1 mg/kg BW (for 5 days) after that PD 100 µg/kg BW (for 21 days); (IV) LPS + PD High: LPS 1 mg/kg BW (for 5 days) after that PD 300 µg/kg BW (for 21 days); (V) PD Low: PD 100 µg/kg BW (for 21 days); (VI) PD High: PD 300 µg/kg BW (for 21 days). All treatments were given intraperitoneal. RESULTS The LPS-induced weight loss (body and brain) was normalized to control after PD treatment. The PD enhanced superoxide dismutase (SOD) activity while decreased lipid hydroperoxide (LOOH) level altered in LPS-exposed mice. The significantly increased pro-inflammatory cytokines (IL-6 and TNF-α) in LPS exposure were also decreased by PD. Likewise, the LPS-induced HPA axis activation was stabilized by PD. In the hippocampus, the pyramidal cell layer thickness, pyramidal neurons number and size of CA1 and CA3 regions were reduced along with misalignment, shrinkage, and impairment of cytoarchitecture. In the co-treated group, the LPS-induced hippocampus disruption was reversed after PD exposure. CONCLUSION We suggested that the PD modulates the LPS-induced neuroinflammation and psychiatric illness in a dose-dependent manner.
Collapse
Affiliation(s)
- Ankit Mishra
- Neurobiology Lab, Department of Zoology, University of Allahabad, Prayagraj, India
| | - K P Singh
- Neurobiology Lab, Department of Zoology, University of Allahabad, Prayagraj, India
| |
Collapse
|
21
|
Suda K, Matsuda K. How Microbes Affect Depression: Underlying Mechanisms via the Gut-Brain Axis and the Modulating Role of Probiotics. Int J Mol Sci 2022; 23:ijms23031172. [PMID: 35163104 PMCID: PMC8835211 DOI: 10.3390/ijms23031172] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that the gut microbiome influences the brain functions and psychological state of its host via the gut-brain axis, and gut dysbiosis has been linked to several mental illnesses, including major depressive disorder (MDD). Animal experiments have shown that a depletion of the gut microbiota leads to behavioral changes, and is associated with pathological changes, including abnormal stress response and impaired adult neurogenesis. Short-chain fatty acids such as butyrate are known to contribute to the up-regulation of brain-derived neurotrophic factor (BDNF), and gut dysbiosis causes decreased levels of BDNF, which could affect neuronal development and synaptic plasticity. Increased gut permeability causes an influx of gut microbial components such as lipopolysaccharides, and the resultant systemic inflammation may lead to neuroinflammation in the central nervous system. In light of the fact that gut microbial factors contribute to the initiation and exacerbation of depressive symptoms, this review summarizes the current understanding of the molecular mechanisms involved in MDD onset, and discusses the therapeutic potential of probiotics, including butyrate-producing bacteria, which can mediate the microbiota-gut-brain axis.
Collapse
|
22
|
D'Agnelli S, Amodeo G, Franchi S, Verduci B, Baciarello M, Panerai AE, Bignami EG, Sacerdote P. Frailty and pain, human studies and animal models. Ageing Res Rev 2022; 73:101515. [PMID: 34813977 DOI: 10.1016/j.arr.2021.101515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/01/2022]
Abstract
The hypothesis that pain can predispose to frailty development has been recently investigated in several clinical studies suggesting that frailty and pain may share some mechanisms. Both pain and frailty represent important clinical and social problems and both lack a successful treatment. This circumstance is mainly due to the absence of in-depth knowledge of their pathological mechanisms. Evidence of shared pathways between frailty and pain are preliminary. Indeed, many clinical studies are observational and the impact of pain treatment, and relative pain-relief, on frailty onset and progression has never been investigated. Furthermore, preclinical research on this topic has yet to be performed. Specific researches on the pain-frailty relation are needed. In this narrative review, we will attempt to point out the most relevant findings present in both clinical and preclinical literature on the topic, with particular attention to genetics, epigenetics and inflammation, in order to underline the existing gaps and the potential future interventional strategies. The use of pain and frailty animal models discussed in this review might contribute to research in this area.
Collapse
|
23
|
Wang J, Liu X, Lian J, Zheng H, Cai D, Cai H, Zhou D, Lin S, Kong F, Qin X, Bi J. Autoimmune antibodies in first-episode psychosis with red flags: A hospital-based case-control study protocol. Front Psychiatry 2022; 13:976159. [PMID: 36276313 PMCID: PMC9579361 DOI: 10.3389/fpsyt.2022.976159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Research is increasingly identifying an overlap between psychosis and immunological dysregulation. Certain autoantibodies are being identified in a small but probably relevant subgroup of patients with psychosis. The term "autoimmune psychosis" (AIP) and its corresponding red-flag signs present the opportunity for a new field in psychiatry to promote diagnostic workup and immunomodulating therapy in individual cases. OBJECTIVES The present protocol aims to determine the seroprevalence of autoantibodies in first-episode psychosis (FEPs) using AIP red flag signs, and to explore the frequency of autoantibody subtypes and potential mediating confounders. METHODS/DESIGN This is a hospital-based case-control study. All participants will be consecutively selected from the main tertiary psychiatric hospital in Shenzhen City, China. Individuals admitted to the psychiatric ward and diagnosed with FEPs will be enrolled. Based on recent consensus, participants with red flags of AIPs will be defined as cases, while the remainder will be matched as controls. Seropositive antibodies will be detected and verified in cerebrospinal fluid (CSF) samples based on the fixed cell-based assay (CBA) method. The propensity score-adjusted odds ratios will be determined to investigate the key mediating confounders regarding autoantibody subtypes and red flag subsets. DISCUSSION The results of this study will facilitate the early identification of AIPs in FEP patients using the red flag sign and help identify key mediators that improve the accuracy of diagnostic algorithms. It will have clinical significance to focus on serum antibodies that have been verified in CSF samples, due to its consistency with clinical practices in current psychiatry.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China.,Global Clinical Scholars Research Training, Harvard Medical School, Boston, MA, United States
| | - Xuan Liu
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jie Lian
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haotao Zheng
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongbin Cai
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haobin Cai
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dan Zhou
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China.,Department of Laboratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Songjun Lin
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fanxin Kong
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiude Qin
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianqiang Bi
- Department of Public Health, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| |
Collapse
|
24
|
Pearson C, Siegel J, Gold JA. Psilocybin-assisted psychotherapy for depression: Emerging research on a psychedelic compound with a rich history. J Neurol Sci 2021; 434:120096. [PMID: 34942586 DOI: 10.1016/j.jns.2021.120096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022]
Abstract
There is a serious need for novel therapies that treat individuals with depression, including major depressive disorder (MDD) and treatment-resistant depression (TRD). An emerging body of research has demonstrated that psychedelic drugs such as psilocybin, combined with supportive psychotherapy, exert rapid and sustained antidepressant effects. The use of psychedelics is not new: they have a rich history with evidence of their use in ritual and medical settings. However, due to political, social, and cultural pressures, their use was limited until modern clinical trials began to emerge in the 2010s. This review provides a comprehensive look at the potential use of psilocybin in the treatment of depression and TRD. It includes an overview of the history, pharmacology, and proposed mechanism of psilocybin, and describes several published studies in the last decade which have provided evidence of the efficacy and safety of psilocybin-assisted psychotherapy for individuals with depression. It also includes a discussion of the limitations and barriers of current research on psychedelics. The results of these studies are contextualized within the current treatment landscape through an overview of the pathophysiology of depression and the treatments currently in use, as well as the clinical needs these novel therapies have the promise to fulfill.
Collapse
Affiliation(s)
- Craig Pearson
- Washington University School of Medicine, St. Louis, MO 63108, United States of America
| | - Joshua Siegel
- Washington University School of Medicine, St. Louis, MO 63108, United States of America
| | - Jessica A Gold
- Washington University School of Medicine, St. Louis, MO 63108, United States of America.
| |
Collapse
|
25
|
Marazziti D, Torrigiani S, Carbone MG, Mucci F, Flamini W, Ivaldi T, Osso LD. Neutrophil/lymphocyte, platelet/lymphocyte and monocyte/lymphocyte ratios in mood disorders. Curr Med Chem 2021; 29:5758-5781. [PMID: 34551689 DOI: 10.2174/0929867328666210922160116] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorders (BDs), the most severe types of mood disorders (MDs), are considered as among the most disabling illnesses worldwide. Several studies suggested that inflammatory neuroinflammation might be involved in the pathophysiology of MDs, while reporting increasing data on the relationships between these processes and classical neurotransmitters, hypothalamus-pituitary-adrenal axis (HPA), and neurotrophic factors. The assessment of neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) in peripheral blood represents a simple method to evaluate the inflammatory status. The aim of the present paper was to review the literature on the possible relationships between NLR, PLR and MLR in MDs, and to comment on their possible wider use in clinical research. Thirty-five studies were included in the present review. The majority of them higher values of these parameters, particularly NLR values, in patients with MDs, when compared to healthy subjects. The increase would appear more robust in patients with BD during a manic episode, thus indicating that it could be considered as both state and trait markers. In addition, increased NLR and PLR levels seem to represent prognostic elements for the early discovery of post-stroke depression. The findings of the present review would indicate the need to carry our further studies in this field. In particular, NLR, PLR and MLR seem to be promising tools to detect economically and easily the activation of the inflammatory system, and to perhaps evaluate the etiology and course of MDs. Again, they could suggest some information to better understand the relationship between inflammatory and cardiovascular disease and MDs, and thus, to provide clinical implications in terms of management and treatment.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Samuele Torrigiani
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese. Italy
| | - Federico Mucci
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese. Italy
| | - Walter Flamini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Tea Ivaldi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Liliana Dell' Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| |
Collapse
|
26
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
27
|
Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves ADO, Schetinger MRC, Ribeiro EE, Morsch VMM, da Cruz IBM. Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int 2021; 148:105085. [PMID: 34052297 DOI: 10.1016/j.neuint.2021.105085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Nutraceuticals have been the focus of numerous research in recent years and accumulating data support their use for promoting some health benefits. Several nutraceuticals have been widely studied as supplements due to their functional properties ameliorating symptoms associated with neurological disorders, such as oxidative stress and chronic inflammatory states. This seems to be the case of some fruits and seeds from the Amazon Biome consumed since the pre-Columbian period that could have potential beneficial impact on the human nervous system. The beneficial activities of these food sources are possibly related to a large number of bioactive molecules including polyphenols, carotenoids, unsaturated fatty acids, vitamins, and trace elements. In this context, this review compiled the research on six Amazonian fruits and seeds species and some of the major nutraceuticals found in their composition, presenting brief mechanisms related to their protagonist action in improving inflammatory responses and neuroinflammation.
Collapse
Affiliation(s)
- Charles Elias Assmann
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Grazielle Castagna Cezimbra Weis
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Beatriz da Silva Rosa Bonadiman
- Post-Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Audrei de Oliveira Alves
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
28
|
Ren C, Li LX, Dong AQ, Zhang YT, Hu H, Mao CJ, Wang F, Liu CF. Depression Induced by Chronic Unpredictable Mild Stress Increases Susceptibility to Parkinson's Disease in Mice via Neuroinflammation Mediated by P2X7 Receptor. ACS Chem Neurosci 2021; 12:1262-1272. [PMID: 33734697 DOI: 10.1021/acschemneuro.1c00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The relationship between depression and Parkinson's disease (PD) is complicated and still not fully understood. We investigated whether depression increased the susceptibility to PD and whether this resulted from neuroinflammation mediated by purinergic ligand-gated ion channel 7 receptor (P2X7R) of microglia in mice. Depression was induced by a 14-day chronic unpredictable mild stress (CUMS), and PD was induced by 1-day acute injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Before MPTP administration, some mice were given brilliant blue G (BBG), a P2X7R inhibitor. Changes in depression and motor function were assessed by sucrose preference, tail suspension, open field, and rotating rod tests. Differences in P2X7R, caspase-1, NLRP3 inflammasome, interleukin (IL)-1β, tyrosine hydroxylase (TH), and microglial activation among experimental groups were detected by immunofluorescence, immunohistochemistry, western blotting, and ELISA. CUMS-induced depression-like behavior, and MPTP induced PD in mice. CUMS mice had no motor dysfunction, but the dyskinesia and loss of TH-positive neurons in the substantia nigra after MPTP treatment were more serious than with MPTP treatment alone. With behavioral changes, neuroinflammatory markers, such as caspase-1, NLRP3 and IL-1β increased, and microglia were activated as well as expression of P2X7R increased. Additionally, BBG partly reversed the above abnormalities. Summarily, we suggest that CUMS aggravates dyskinesia and death of dopaminergic neurons in an MPTP-PD model via promoting activation of microglia and neuroinflammation, which may be mediated by P2X7R. Inhibition of P2X7R could be a new control strategy for PD associated with depression.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Ling-Xi Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - An-Qi Dong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yu-ting Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Hua Hu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Fen Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
29
|
Imaging Biomarkers for Monitoring the Inflammatory Redox Landscape in the Brain. Antioxidants (Basel) 2021; 10:antiox10040528. [PMID: 33800685 PMCID: PMC8065574 DOI: 10.3390/antiox10040528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation is one key process in driving cellular redox homeostasis toward oxidative stress, which perpetuates inflammation. In the brain, this interplay results in a vicious cycle of cell death, the loss of neurons, and leakage of the blood–brain barrier. Hence, the neuroinflammatory response fuels the development of acute and chronic inflammatory diseases. Interrogation of the interplay between inflammation, oxidative stress, and cell death in neurological tissue in vivo is very challenging. The complexity of the underlying biological process and the fragility of the brain limit our understanding of the cause and the adequate diagnostics of neuroinflammatory diseases. In recent years, advancements in the development of molecular imaging agents addressed this limitation and enabled imaging of biomarkers of neuroinflammation in the brain. Notable redox biomarkers for imaging with positron emission tomography (PET) tracers are the 18 kDa translocator protein (TSPO) and monoamine oxygenase B (MAO–B). These findings and achievements offer the opportunity for novel diagnostic applications and therapeutic strategies. This review summarizes experimental as well as established pharmaceutical and biotechnological tools for imaging the inflammatory redox landscape in the brain, and provides a glimpse into future applications.
Collapse
|
30
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
31
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
32
|
Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 2021; 26:1044-1059. [PMID: 33328588 PMCID: PMC7738776 DOI: 10.1038/s41380-020-00965-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Scientists and health professionals are exhaustively trying to contain the coronavirus disease 2019 (COVID-19) pandemic by elucidating viral invasion mechanisms, possible drugs to prevent viral infection/replication, and health cares to minimize individual exposure. Although neurological symptoms are being reported worldwide, neural acute and long-term consequences of SARS-CoV-2 are still unknown. COVID-19 complications are associated with exacerbated immunoinflammatory responses to SARS-CoV-2 invasion. In this scenario, pro-inflammatory factors are intensely released into the bloodstream, causing the so-called "cytokine storm". Both pro-inflammatory factors and viruses may cross the blood-brain barrier and enter the central nervous system, activating neuroinflammatory responses accompanied by hemorrhagic lesions and neuronal impairment, which are largely described processes in psychiatric disorders and neurodegenerative diseases. Therefore, SARS-CoV-2 infection could trigger and/or worse brain diseases. Moreover, patients with central nervous system disorders associated to neuroimmune activation (e.g. depression, Parkinson's and Alzheimer's disease) may present increased susceptibility to SARS-CoV-2 infection and/or achieve severe conditions. Elevated levels of extracellular ATP induced by SARS-CoV-2 infection may trigger hyperactivation of P2X7 receptors leading to NLRP3 inflammasome stimulation as a key mediator of neuroinvasion and consequent neuroinflammatory processes, as observed in psychiatric disorders and neurodegenerative diseases. In this context, P2X7 receptor antagonism could be a promising strategy to prevent or treat neurological complications in COVID-19 patients.
Collapse
|
33
|
Neuroinflammatory responses in Parkinson's disease: relevance of Ibuprofen in therapeutics. Inflammopharmacology 2020; 29:5-14. [PMID: 33052479 DOI: 10.1007/s10787-020-00764-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) pathogenesis inevitably involves neuroinflammatory responses attained through contribution of both neuron and glial cells. Investigation done in both experimental models of PD and in samples of PD patients suggested the involvement of both central and peripheral inflammatory responses during PD pathogenesis. Such neuroinflammatory responses could be regulated by neuron-glia interaction which is one of the recently focused areas in the field of disease diagnosis, pathogenesis and therapeutics. Such aggravated neuroinflammatory responses during PD are very well associated with augmented levels of cyclooxygenase (COX). An increased expression of cyclooxygenase (COX) with a concomitant increase in the prostaglandin E2 (PGE2) levels has been observed during PD pathology. Ibuprofen is one of the non-steroidal anti-inflammatory drugs (NSAID) and clinically being used for PD patients. This review focuses on the neuroinflammatory responses during PD pathology as well as the effect of ibuprofen on various disease related signaling factors and mechanisms involving nitrosative stress, neurotransmission, neuronal communication and peroxisome proliferator-activated receptor-γ. Such mechanistic effect of ibuprofen has been mostly reported in experimental models of PD and clinical investigations are still required. Since oxidative neuronal death is one of the major neurodegenerative mechanisms in PD, the antioxidant capacity of ibuprofen along with its antidepressant effects have also been discussed. This review will direct the readers towards fulfilling the existing gaps in the mechanistic aspect of ibuprofen and enhance its clinical relevance in PD therapeutics and probably in other age-related neurodegenerative diseases.
Collapse
|
34
|
Ghasemi H, Nomani H, Sahebkar A, Mohammadpour AH. Anti-inflammatory Augmentation Therapy in Obsessive-compulsive Disorder: A Review. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200520122910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obsessive-Compulsive Disorder (OCD) is considered as a serious disabling
psychiatric disorder, influencing 2-3% of the total general population, with an unknown etiology.
Methods:
A comprehensive literature search in electronic databases was performed to investigate
treatments targeting inflammation in patients suffering from OCD.
Results:
Recent studies display that inflammation processes and the dysfunction of the immune system
are likely to play a role in the pathophysiology of OCD, indicating that the disturbances in neurotransmitters
such as serotonin and dopamine cannot be alone involved in the development of
OCD. Therefore, it seems that medications with anti-inflammatory effects have the potential to be
evaluated as a new therapeutic strategy for OCD. However, this issue can be studied closely if OCD
etiological factors are thoroughly understood. The present review study aims at gathering all obtained
results concerning new treatments targeting inflammation in OCD patients. Reviewing the
conducted studies shows that the use of agents with anti-inflammatory properties, including some
NSAIDs, Minocycline and Atorvastatin, could lead to promising and intriguing results in the treatment
of OCD. Curcumin also showed good efficacy in the reduction of OCD-like behavior when it
has been used in an animal model. However, there is still no definitive and conclusive evidence for
any of the medications proposed.
Conclusion:
More future studies are needed to investigate anti-inflammatory treatment strategies for
OCD and its other subtypes such as Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS), and
Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infection
(PANDAS).
Collapse
Affiliation(s)
- Hanie Ghasemi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homa Nomani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Elhady M, Elattar RS, Elaidy AMA, Abdallah NA, Elmalt HA. Role of inflammation in childhood epilepsy and ADHD comorbidity. APPLIED NEUROPSYCHOLOGY-CHILD 2020; 11:291-296. [PMID: 32841085 DOI: 10.1080/21622965.2020.1807982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epilepsy is a heterogeneous disorder that is not limited to experiencing seizures but also includes multiple neuropsychiatric squeal (i.e. attention-deficit/hyperactivity disorder (ADHD), depression and anxiety) that adversely impact a child quality of life. However, the underlying mechanism linking both disorders is not yet thoroughly explored. Our objective was to assess pro-inflammatory cytokines levels in children with seizure controlled epilepsy and explore the association between pro-inflammatory cytokines and the co-occurrence of ADHD in such children. A cross-sectional study included 50 children with controlled epilepsy for at least one year, in addition to 30 neurotypical children as controls. All children were assessed by the Conner parent scale for ADHD. Serum interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels were measured and correlated to clinical data. In the present study, 23 out of 50 children with epilepsy also had ADHD (46%). Children with ADHD have been found to have a significantly lower age of onset, longer duration of epilepsy, and a higher serum level of IL-6 and TNF-α than those without ADHD. The Conner's parent rating scale overall total score yielded significant negative correlations with the age of onset of epilepsy and a significant positive correlation with the duration of epilepsy and pro-inflammatory cytokine levels. In addition to active seizures, the presence of elevated circulating inflammation markers may be associated with increased frequency of ADHD in children with epilepsy aged 6-14 years.
Collapse
Affiliation(s)
- Marwa Elhady
- Pediatric Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Rasha Sobhy Elattar
- Neurology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | | | - Heba A Elmalt
- Medical Biochemistry, National Research Center, Cairo, Egypt
| |
Collapse
|
36
|
Rooney S, Sah A, Unger MS, Kharitonova M, Sartori SB, Schwarzer C, Aigner L, Kettenmann H, Wolf SA, Singewald N. Neuroinflammatory alterations in trait anxiety: modulatory effects of minocycline. Transl Psychiatry 2020; 10:256. [PMID: 32732969 PMCID: PMC7393101 DOI: 10.1038/s41398-020-00942-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 02/04/2023] Open
Abstract
High trait anxiety is a substantial risk factor for developing anxiety disorders and depression. While neuroinflammation has been identified to contribute to stress-induced anxiety, little is known about potential dysregulation in the neuroinflammatory system of genetically determined pathological anxiety or high trait anxiety individuals. We report microglial alterations in various brain regions in a mouse model of high trait anxiety (HAB). In particular, the dentate gyrus (DG) of the hippocampus of HABs exhibited enhanced density and average cell area of Iba1+, and density of phagocytic (CD68+/Iba1+) microglia compared to normal anxiety (NAB) controls. Minocycline was used to assess the capacity of a putative microglia 'inhibitor' in modulating hyperanxiety behavior of HABs. Chronic oral minocycline indeed reduced HAB hyperanxiety, which was associated with significant decreases in Iba1+ and CD68+Iba1+ cell densities in the DG. Addressing causality, it was demonstrated that longer (10 days), but not shorter (5 days), periods of minocycline microinfusions locally into the DG of HAB reduced Iba-1+ cell density and attenuated hyperanxiety-related behavior, indicating that neuroinflammation in the DG is at least partially involved in the maintenance of pathological anxiety. The present data reveal evidence of disturbances in the microglial system of individuals with high trait anxiety. Minocycline attenuated HAB hyperanxiety, likely by modulation of microglial activity within the DG. Thus, the present data suggest that drugs with microglia-targeted anti-inflammatory properties could be promising as novel alternative or complimentary anxiolytic therapeutic approaches in specific subgroups of individuals genetically predisposed to hyperanxiety.
Collapse
Affiliation(s)
- Sinead Rooney
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Michael S Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Helmut Kettenmann
- Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Susanne A Wolf
- Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Ophthalmology, Charité Universitätsmedizin, Berlin, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
37
|
ATP-Nlrp3 Inflammasome-Complement Cascade Axis in Sterile Brain Inflammation in Psychiatric Patients and its Impact on Stem Cell Trafficking. Stem Cell Rev Rep 2020; 15:497-505. [PMID: 31020518 PMCID: PMC6647482 DOI: 10.1007/s12015-019-09888-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence indicates that the occurrence of psychiatric disorders in patients is linked to a local “sterile” inflammation of brain or due to a systemic inflammation process that affects the central nervous system. This is supported by the observation that in peripheral blood of psychotic patients are detectable several mediators and markers of inflammation as well as clinical data on correlations between systemic chronic inflammatory processes and psychiatric disorders. This may explain why some reported anti-inflammatory treatment strategies have beneficial effects on ameliorating psychotic events. In this review we will present a concept that aberrant purinergic signaling and increases in extracellular level of adenosine triphosphate (ATP) in the brain parenchyma may lead to activation of Nlrp3 inflammasome in microglia cells and as a consequence microglia released danger associated molecular pattern (DAMP) proteins activate complement cascade (ComC) in mannan binding lectin (MBL) – dependent manner. Activation of ATP-Nlrp3 inflammasome-ComC axis may also orchestrate trafficking of stem cells released from bone marrow into peripheral blood observed in psychotic patients. Based on this, the ATP-Nlrp3 inflammasome-ComC axis may become a target for new therapeutic approaches, which justifies the development and clinical application of efficient anti-inflammatory treatment strategies targeting this axis in psychiatry.
Collapse
|
38
|
Tseng YT, Cox TM, Grant GD, Arora D, Hall S, McFarland AJ, Ekberg J, Rudrawar S, Anoopkumar-Dukie S. In vitro cytotoxicity of montelukast in HAPI and SH-SY5Y cells. Chem Biol Interact 2020; 326:109134. [PMID: 32464120 DOI: 10.1016/j.cbi.2020.109134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Montelukast is a cysteinyl leukotriene (CysLT) receptor antagonist with efficacy against a variety of diseases, including asthma and inflammation-related conditions. However, various neuropsychiatric events (NEs) suspected to be related to montelukast have been reported recently, with limited understanding on their association and underlying mechanisms. This study aimed to investigate whether montelukast can induce neuroinflammation and neurotoxicity in microglial HAPI cells and neural SH-SY5Y cells. The present study also compared the effects of montelukast with a 5-lipoxygenase inhibitor (zileuton) and a cyclooxygenase-2 inhibitor (celecoxib) to better understand modulation of related pathways. HAPI or SH-SY5Y cells were treated with the indicated drugs (3.125 μM-100 μM) for 24 h to investigate drug-induced neuroinflammation and neurotoxicity. Montelukast induced cytotoxicity in HAPI cells (50-100 μM), accompanied with caspase-3/7 activation, prostaglandin E2 (PGE2) release, and reactive oxygen species (ROS) production. Whilst both montelukast and zileuton down-regulated CysLT release in HAPI cells, zileuton did not significantly affect cell viability or inflammatory and oxidative factors. Celecoxib decreased HAPI cell viability (6.25-100 μM), accompanied with increasing caspase-3/7 activation and ROS production, but in contrast to montelukast increased CysLT release and decreased PGE2 production. Similar to observations in HAPI cells, both montelukast and celecoxib (50-100 μM) but not zileuton produced toxicity in SH-SY5Y neuroblastoma cells. Similarly, CM from HAPI cells treated with either montelukast or zileuton produced toxicity in SH-SY5Y cells. The results of the current study show the capability of montelukast to directly induce toxicity and inflammation in HAPI cells, possibly through the involvement of PGE2 and ROS, and toxicity in undifferentiated SH-SY5Y neuroblastoma cells. The current study highlights the importance of consideration between benefit and risk of montelukast usage and provides references for future investigation on decreasing montelukast-related NEs.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Tynan M Cox
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Gary D Grant
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Devinder Arora
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Susan Hall
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Amelia J McFarland
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Queensland, 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia.
| |
Collapse
|
39
|
Protective Effects of Quercetin on Anxiety-Like Symptoms and Neuroinflammation Induced by Lipopolysaccharide in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4892415. [PMID: 32419805 PMCID: PMC7204389 DOI: 10.1155/2020/4892415] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
Abstract
Recently, neuroinflammation is thought to be one of the important causes of many neuropsychiatric diseases. Quercetin (QUER) is a natural flavonoid, and it is well known that QUER has antioxidative, anti-inflammatory, and neuroprotective effects. In our study, lipopolysaccharide (LPS) was injected into the lateral ventricle of rats to induce anxiety-like behaviors and neuroinflammation, and it was confirmed that chronic administration of QUER could improve anxiety-like symptoms. We also investigated the effects of QUER on inflammatory markers and its major mechanisms associated with inflammation in the hippocampus. Daily administration of QUER (10, 50, and 100 mg/kg) daily for 21 days significantly improved anxiety-like behaviors in the elevated plus-maze test and open field test. QUER administration significantly reduced inflammatory markers such as interleukin-6, interleukin-1β, cyclooxygenase-2, and nuclear factor-kappaB levels in the brain. In addition, QUER significantly increased the brain-derived neurotrophic factor (BDNF) mRNA level and decreased the nitric oxide synthase (iNOS) mRNA level. Therefore, our results have shown that QUER can improve anxiety-like behaviors caused by chronic neuroinflammation. This anxiolytic effect of QUER has been shown to be due to its anti-inflammatory effects and appropriate regulation of BDNF and iNOS expression. Thus, QUER provides the potential as a therapeutic agent to inhibit anxiety-like symptoms in neuropsychiatric diseases, such as anxiety.
Collapse
|
40
|
Sahu A, Chowdhury HA, Gaikwad M, Chongtham C, Talukdar U, Phukan JK, Bhattacharyya DK, Barah P. Integrative network analysis identifies differential regulation of neuroimmune system in Schizophrenia and Bipolar disorder. Brain Behav Immun Health 2020; 2:100023. [PMID: 38377413 PMCID: PMC8474577 DOI: 10.1016/j.bbih.2019.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022] Open
Abstract
Background Neuropsychiatric disorders such as Schizophrenia (SCZ) and Bipolar disorder (BPD) pose a broad range of problems with different symptoms mainly characterized by some combination of abnormal thoughts, emotions, behaviour, etc. However, in depth molecular and pathophysiological mechanisms among different neuropsychiatric disorders have not been clearly understood yet. We have used RNA-seq data to investigate unique and overlapping molecular signatures between SCZ and BPD using an integrative network biology approach. Methods RNA-seq count data were collected from NCBI-GEO database generated on post-mortem brain tissues of controls (n = 24) and patients of BPD (n = 24) and SCZ (n = 24). Differentially expressed genes (DEGs) were identified using the consensus of DESeq2 and edgeR tools and used for downstream analysis. Weighted gene correlation networks were constructed to find non-preserved (NP) modules for SCZ, BPD and control conditions. Topological analysis and functional enrichment analysis were performed on NP modules to identify unique and overlapping expression signatures during SCZ and BPD conditions. Results We have identified four NP modules from the DEGs of BPD and SCZ. Eleven overlapping genes have been identified between SCZ and BPD networks, and they were found to be highly enriched in inflammatory responses. Among these eleven genes, TNIP2, TNFRSF1A and AC005840.1 had higher sum of connectivity exclusively in BPD network. In addition, we observed that top five genes of NP module from SCZ network were downregulated which may be a key factor for SCZ disorder. Conclusions Differential activation of the immune system components and pathways may drive the common and unique pathogenesis of the BPD and SCZ.
Collapse
Affiliation(s)
- Ankur Sahu
- Department of Molecular Biology and Biotechnology, Tezpur University, 784028, India
| | | | - Mithil Gaikwad
- Department of Molecular Biology and Biotechnology, Tezpur University, 784028, India
| | - Chen Chongtham
- Department of Molecular Biology and Biotechnology, Tezpur University, 784028, India
| | - Uddip Talukdar
- Department of Psychiatry, Fakhruddin Ali Ahmed Medical College and Hospital, Assam, 781301, India
| | - Jadab Kishor Phukan
- Department of Biochemistry, LGB Regional Institute of Mental Health (LGBRIMH), Tezpur, 784001, India
| | | | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, 784028, India
| |
Collapse
|
41
|
Lee JS, Jeon YJ, Park SY, Son CG. An Adrenalectomy Mouse Model Reflecting Clinical Features for Chronic Fatigue Syndrome. Biomolecules 2020; 10:E71. [PMID: 31906307 PMCID: PMC7023174 DOI: 10.3390/biom10010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/24/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is one of the most intractable diseases and is characterized by severe central fatigue that impairs even daily activity. To date, the pathophysiological mechanisms are uncertain and no therapies exist. Therefore, a proper animal model reflecting the clinical features of CFS is urgently required. We compared two CFS animal models most commonly used, by injection with lipopolysaccharide (LPS from Escherichia coli O111:B4) or polyinosinic: polycytidylic acid (poly I:C), along with bilateral adrenalectomy (ADX) as another possible model. Both LPS- and poly I:C-injected mice dominantly showed depressive behaviors, while ADX led to fatigue-like performances with high pain sensitivity. In brain tissues, LPS injection notably activated microglia and the 5-hydroxytryptamine (HT)1A receptor in the prefrontal cortex and hippocampus. Poly I:C-injection also remarkably activated the 5-HT transporter and 5-HT1A receptor with a reduction in serotonin levels in the brain. ADX particularly activated astrocytes and transforming growth factor beta (TGF-β) 1 in all brain regions. Our results revealed that LPS and poly I:C animal models approximate depressive disorder more closely than CFS. We suggest that ADX is a possible method for establishing a mouse model of CFS reflecting clinical features, especially in neuroendocrine system.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon 34323, Korea; (J.-S.L.); (Y.-J.J.)
| | - Yoo-Jin Jeon
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon 34323, Korea; (J.-S.L.); (Y.-J.J.)
| | - Samuel-Young Park
- Korean Medical College of Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34323, Korea;
| | - Chang-Gue Son
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon 34323, Korea; (J.-S.L.); (Y.-J.J.)
| |
Collapse
|
42
|
Limandri BJ. Inflammatory Response and Treatment-Resistant Mental Disorders: Should Immunotherapy Be Added to Pharmacotherapy? J Psychosoc Nurs Ment Health Serv 2020; 58:11-16. [PMID: 31895965 DOI: 10.3928/02793695-20191218-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatment resistance continues to challenge and frustrate mental health clinicians and provoke psychiatric researchers to seek additional explanatory theories for psychopathology. Because the inflammatory process activates symptoms of depression, anxiety, and psychosis, it is a reasonable route to follow for primary and/or indirect contribution to mental disorders. The current article reviews the research literature regarding the role the inflammatory process and immune system play in mental disorders as well as novel treatments under investigation for resistant depression, anxiety, substance use, and psychotic disorders. [Journal of Psychosocial Nursing and Mental Health Services, 58(1), 11-16.].
Collapse
|
43
|
Pollak TA, Lennox BR, Müller S, Benros ME, Prüss H, Tebartz van Elst L, Klein H, Steiner J, Frodl T, Bogerts B, Tian L, Groc L, Hasan A, Baune BT, Endres D, Haroon E, Yolken R, Benedetti F, Halaris A, Meyer JH, Stassen H, Leboyer M, Fuchs D, Otto M, Brown DA, Vincent A, Najjar S, Bechter K. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 2020; 7:93-108. [PMID: 31669058 DOI: 10.1016/s2215-0366(19)30290-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
There is increasing recognition in the neurological and psychiatric literature of patients with so-called isolated psychotic presentations (ie, with no, or minimal, neurological features) who have tested positive for neuronal autoantibodies (principally N-methyl-D-aspartate receptor antibodies) and who have responded to immunotherapies. Although these individuals are sometimes described as having atypical, mild, or attenuated forms of autoimmune encephalitis, some authors feel that that these cases are sufficiently different from typical autoimmune encephalitis to establish a new category of so-called autoimmune psychosis. We briefly review the background, discuss the existing evidence for a form of autoimmune psychosis, and propose a novel, conservative approach to the recognition of possible, probable, and definite autoimmune psychoses for use in psychiatric practice. We also outline the investigations required and the appropriate therapeutic approaches, both psychiatric and immunological, for probable and definite cases of autoimmune psychoses, and discuss the ethical issues posed by this challenging diagnostic category.
Collapse
Affiliation(s)
- Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Belinda R Lennox
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Sabine Müller
- Department of Psychiatry and Psychotherapy Charité Campus Mitte (CCM), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael E Benros
- Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Harald Prüss
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany; German Center for Neurodegenerative Diseases, CharitéCrossOver, Berlin, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center, and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Hans Klein
- Department of Assertive Community Treatment, Lentis Mental Health Institute, Leek, Netherlands; Department of Assertive Community Treatment, VNN Addiction Care Institute, Groningen, Netherlands; Medical Imaging Centre, University of Groningen, Groningen, Netherlands
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy and Center for Behavioral Brain Sciences, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy and Center for Behavioral Brain Sciences, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy and Center for Behavioral Brain Sciences, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Li Tian
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University, Beijing, China; Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Laurent Groc
- Interdisciplinary Institute for NeuroSciences, Université de Bordeaux, Bordeaux, France
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Bernhard T Baune
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia; The Florey Institute of Mental Health and Neurosciences, The University of Melbourne, Parkville, VIC, Australia; Department of Psychiatry, University of Münster, Münster, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center, and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert Yolken
- Department of Pediatrics, Stanley Neurovirology Division, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Angelos Halaris
- Department of Psychiatry, Loyola University Medical Center, Maywood, IL, USA
| | - Jeffrey H Meyer
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Institute of Medical Science, Toronto, ON, Canada; Departments of Psychiatry and Department of Pharmacology and Toxicology, Institute of Medical Science, Toronto, ON, Canada
| | - Hans Stassen
- Institute for Response-Genetics, Psychiatric University Hospital, Zurich, Switzerland
| | - Marion Leboyer
- Inserm U955, Fondation FondaMental, Department of Psychiatry and Addiction, Mondor University Hospital, University Paris-Est-Créteil, Créteil, France
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Markus Otto
- Department of Neurology, University Clinic, Ulm University, Ulm, Germany
| | - David A Brown
- Department of Immunopathology and Department Clinical Immunology, New South Wales Health Pathology, Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Souhel Najjar
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Karl Bechter
- Department of Psychiatry and Psychotherapy II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| |
Collapse
|
44
|
Alagan A, Jantan I, Kumolosasi E, Ogawa S, Abdullah MA, Azmi N. Protective Effects of Phyllanthus amarus Against Lipopolysaccharide-Induced Neuroinflammation and Cognitive Impairment in Rats. Front Pharmacol 2019; 10:632. [PMID: 31231221 PMCID: PMC6558432 DOI: 10.3389/fphar.2019.00632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Phyllanthus amarus (PA) is widely studied for its hepatoprotective properties but has recently received increasing attention due to its diverse anti-inflammatory effects. However, the effects of PA in modulating immune responses in the central nervous system leading to protection against functional changes remain unexplored. Therefore, we sought to examine the protective effects of 80% v/v ethanol extract of PA on lipopolysaccharide (LPS)-induced non-spatial memory impairment and neuroinflammation. Methods: Selected major phytoconstituents of PA extract were identified and quantified using high-performance liquid chromatography. Subchronic neurotoxicity was performed in male Wistar rats given daily oral administration of 100, 200, and 400 mg/kg of the PA extract. Their neurobehavioral activities (functional observation battery and locomotor activity) were scored, and the extracted brains were examined for neuropathological changes. Rats were treated orally with vehicle (5% Tween 20), PA extract (100, 200, and 400 mg/kg), or ibuprofen (IBF; 40 mg/kg) for 14 and 28 days before being subjected to novel object discrimination test. All groups were challenged with LPS (1 mg/kg) given intraperitoneally a day prior to the behavioral tests except for the negative control group. At the end of the behavioral tests, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, nitric oxide (NO), inducible nitric oxide synthase (iNOS), CD11b/c integrin expression, and synaptophysin immunoreactivity were determined in the brain tissues. Results: Gallic acid, ellagic acid, corilagin, geraniin, niranthin, phyllanthin, hypophyllanthin, phyltetralin, and isonirtetralin were identified in the PA extract. Subchronic administration of PA extract (100, 200, and 400 mg/kg) showed no abnormalities in neurobehavior and brain histology. PA extract administered at 200 and 400 mg/kg for 14 and 28 days effectively protected the rodents from LPS-induced memory impairment. Similar doses significantly (p < 0.05) decreased the release of proteins like TNF-α, IL-1β, and iNOS in the brain tissue. NO levels, CD11b/c integrin expression, and synaptophysin immunoreactivity were also reduced as compared with those in the LPS-challenged group. Conclusion: Pre-treatment with PA extract for 14 and 28 days was comparable with pre-treatment with IBF in prevention of memory impairment and alleviation of neuroinflammatory responses induced by LPS. Further studies are essential to identify the bioactive phytochemicals and the precise underlying mechanisms.
Collapse
Affiliation(s)
- Akilandeshwari Alagan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- School of Pharmacy-SRI, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology,Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norazrina Azmi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Mao M, Li S, Zong M, Qiu L, Yang J, Xia J, Yang J, Ji M. Two-hit model of postintensive care syndrome induced by lipopolysaccharide challenge and subsequent chronic unpredictable stress in mice. Int Immunopharmacol 2019; 70:446-458. [PMID: 30856395 DOI: 10.1016/j.intimp.2019.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Postintensive care syndrome (PICS) is defined as a new or worsening impairment in cognition, mental health, and physical function after critical illness. However, there is still a lack of a clinically relevant animal model. Thus, development of a PICS model is essential for understanding the mechanism underlying PICS and screening treatment methods for this neuropsychiatric disorder. The purpose of this study was to establish a clinically relevant PICS model based on the two-hit concept, in which lipopolysaccharide (LPS, 3 mg/kg) injection was served as the first hit and subsequent modified chronic unpredictable stress as the second hit. In order to pharmacologically verify the proposed model of PICS, we studied the effectiveness of fluoxetine to reverse the behavioral and molecular abnormalities in this model. In the present study, body- and adrenal weight changes proved our model was effective, as reflected by body weight loss, increased adrenals weight, and a significantly increased level of plasma corticosterone. Moreover, our PICS model displayed reproducible anxiety- and depression like behavior and cognitive impairments. Neurobiological investigations revealed a significant up-regulation of the microglial marker CD68 and pro-inflammatory cytokine IL-6 in the hippocampus of stressed mice. Notably, chronic treatment with fluoxetine for three weeks reversed most of the affected parameters. In summary, we believe that we have developed a new model of PICS that is clinically relevant, which could advance the mechanism research and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Mingjie Mao
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Shuming Li
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Manman Zong
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lili Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianjun Yang
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Muhuo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
46
|
Abstract
Serotonin (5-hydroxytryptamine, 5-HT)2A receptor agonists have recently emerged as promising new treatment options for a variety of disorders. The recent success of these agonists, also known as psychedelics, like psilocybin for the treatment of anxiety, depression, obsessive-compulsive disorder (OCD), and addiction, has ushered in a renaissance in the way these compounds are perceived in the medical community and populace at large. One emerging therapeutic area that holds significant promise is their use as anti-inflammatory agents. Activation of 5-HT2A receptors produces potent anti-inflammatory effects in animal models of human inflammatory disorders at sub-behavioural levels. This review discusses the role of the 5-HT2A receptor in the inflammatory response, as well as highlight studies using the 5-HT2A agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] to treat inflammation in cellular and animal models. It also examines potential mechanisms by which 5-HT2A agonists produce their therapeutic effects. Overall, psychedelics regulate inflammatory pathways via novel mechanisms, and may represent a new and exciting treatment strategy for several inflammatory disorders.
Collapse
Affiliation(s)
- Thomas W Flanagan
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Charles D Nichols
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
47
|
Inflammation and Neuro-Immune Dysregulations in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2018; 11:ph11020056. [PMID: 29867038 PMCID: PMC6027314 DOI: 10.3390/ph11020056] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests, or activities. Strong inflammation states are associated with ASD. This inflammatory condition is often linked to immune system dysfunction. Several cell types are enrolled to trigger and sustain these processes. Neuro-inflammation and neuro-immune abnormalities have now been established in ASD as key factors in its development and maintenance. In this review, we will explore inflammatory conditions, dysfunctions in neuro-immune cross-talk, and immune system treatments in ASD management.
Collapse
|