1
|
Mo Y, Li X, Lu Y, Tu P. Development of an integrated strategy for comprehensive characterization of Sinomenii Caulis extract and metabolites in rats based on UPLC/Q-TOF-MS. J Pharm Biomed Anal 2024; 249:116391. [PMID: 39116504 DOI: 10.1016/j.jpba.2024.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Sinomenii Caulis (SC), a commonly used traditional Chinese medicine for its therapeutic effects on rheumatoid arthritis, contains rich chemical components. At present, most studies mainly focus on sinomenine, with little research on other alkaloids. In this study, a comprehensive profile of compounds in SC extract, and biological samples of rats (including bile, urine, feces, and plasma) after oral administration of SC extract was conducted via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The fragmentation patterns and potential biotransformation pathways of six main types of alkaloids in SC were summarized, and the corresponding characteristic product ions, relative ion intensity, and neutral losses were obtained to achieve rapid classification and identification of complex components of SC from in vitro to in vivo. As a result, a total of 114 alkaloid compounds were identified, including 12 benzyl alkaloids, 4 isoquinolone alkaloids, 32 aporphine alkaloids, 28 protoberberine alkaloids, 34 morphinan alkaloids and 4 organic amine alkaloids. After administration of SC extract to rats, a total of 324 prototypes and metabolites were identified from rat plasma, urine, feces and bile, including 81 aporphines, 95 protoberberines, 117 morphinans and 31 benzylisoquinolines. The main types of metabolites were demethylation, hydrogenation, dehydrogenation, aldehydation, oxidation, methylation, sulfate esterification, glucuronidation, glucose conjugation, glycine conjugation, acetylation, and dihydroxylation. In summary, this integrated strategy provides an additional approach for the incomplete identification caused by compound diversity and low abundance, laying the foundation for the discovery of new bioactive compounds of SC against rheumatoid arthritis.
Collapse
Affiliation(s)
- Yuque Mo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoshuang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Simin A, Ghaffarifar F, Delavari H, Dayer MS, Hamidianfar N, Baghkhani F. In vitro and In vivo Effects of Ethanolic Extract of Fumaria parviflora Lam. Embedded in Chitosan Nanoparticles Against Leishmania major. Acta Parasitol 2024; 69:628-638. [PMID: 38294710 DOI: 10.1007/s11686-023-00784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Fumaria has been traditionally used to treat skin damages due to anti-inflammatory properties. In the present study, we evaluated the effect of the ethanolic extract of Fumaria parviflora Lam. (F. parviflora) against Leishmania major (L. major) using chitosan biopolymer drug delivery system both In vitro and In vivo models. MATERIALS AND METHODS The ethanolic extract of F. parviflora was analyzed by HPLC to determine its active ingredients content. The extract was then loaded on chitosan nanoparticles (CNPs). The parasite was treated with various concentrations of the ethanolic extract, CNPs and CNPs loaded with F. parviflora extract (CNPs@ F. parviflora). The size of lesions of treated mice were measured on a weekly basis. The parasite burden was evaluated 8 weeks after treatment. RESULTS The HPLC analysis showed the presence of Fumaric acid at a high concentration. The percentage of the drug released from CNPs@ F. parviflora within 24 and 72 h were 65% and 90% respectively. The results showed that F. parviflora extract and CNPs@ F. parviflora caused 84% and 96% growth inhibition of L. major promastigotes as revealed by Neubauer chamber counting and MTT test respectively. The IC50 values of F. parviflora extract and CNPs@ F. parviflora were 450 and 68.4 µg/ml respectively. In amastigote assay, the best results showed in CNPs@ F. parviflora that only 2% of macrophages were infected with amastigotes. In vivo experiments for mice treated with F. parviflora and CNPs @ F. parviflora in comparison to control group showed a significant reduction (P < 0.05) in the mean diameter of the lesions (2.3 and 1.72 mm and 9.91 mm respectively). CONCLUSION The ethanolic extract of F. parviflora both as standalone and loaded in CNPs showed promising inhibitory effects against L. major both upon In vitro and In vivo experimentation as well as therapeutic effects for wound healing in infected mice.
Collapse
Affiliation(s)
- Azar Simin
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran
| | - Fatemeh Ghaffarifar
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran.
| | - Hamid Delavari
- Department of Materials Engineering, Nanomaterials Group, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Saaid Dayer
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran
| | - Najla Hamidianfar
- Department of Natural Resources and Environmental Sciences, Faculty of Agriculture and Natural Resources, Islamic Azad University Khorasgan (Isfahan) Branch, Isfahan, Islamic Republic of Iran
| | - Farzaneh Baghkhani
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran
| |
Collapse
|
3
|
Mohammed MA, Elzefzafy N, El-Khadragy MF, Alzahrani A, Yehia HM, Kachlicki P. Comprehensive Tools of Alkaloid/Volatile Compounds-Metabolomics and DNA Profiles: Bioassay-Role-Guided Differentiation Process of Six Annona sp. Grown in Egypt as Anticancer Therapy. Pharmaceuticals (Basel) 2024; 17:103. [PMID: 38256936 PMCID: PMC10821326 DOI: 10.3390/ph17010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Trees of the Annona species that grow in the tropics and subtropics contain compounds that are highly valuable for pharmacological research and medication development and have anticancer, antioxidant, and migratory properties. Metabolomics was used to functionally characterize natural products and to distinguish differences between varieties. Natural products are therefore bioactive-marked and highly respected in the field of drug innovation. Our study aimed to evaluate the interrelationships among six Annona species. By utilizing six Start Codon Targeted (SCoT) and six Inter Simple Sequence Repeat (ISSR) primers for DNA fingerprinting, we discovered polymorphism percentages of 45.16 and 35.29%, respectively. The comparison of the profiles of 78 distinct volatile oil compounds in six Annona species was accomplished through the utilization of GC-MS-based plant metabolomics. Additionally, the differentiation process of 74 characterized alkaloid compound metabolomics was conducted through a structural analysis using HPLC-ESI-MSn and UPLC-HESI-MS/MS, and antiproliferative activities were assessed on five in vitro cell lines. High-throughput, low-sensitivity LC/MS-based metabolomics has facilitated comprehensive examinations of alterations in secondary metabolites through the utilization of bioassay-guided differentiation processes. This has been accomplished by employing twenty-four extracts derived from six distinct Annona species, which were subjected to in vitro evaluation. The primary objective of this evaluation was to investigate the IC50 profile as well as the antioxidant and migration activities. It should be noted, however, that these investigations were exclusively conducted utilizing the most potent extracts. These extracts were thoroughly examined on both the HepG2 and Caco cell lines to elucidate their potential anticancer effects. In vitro tests on cell cultures showed a significant concentration cytotoxic effect on all cell lines (HepG2, HCT, Caco, Mcf-7, and T47D) treated with six essential oil samples at the exposure time (48 h). Therefore, they showed remarkable antioxidant activity with simultaneous cytotoxic effects. In total, 50% and 80% of the A. muricata extract, the extract with the highest migratory activity, demonstrated a dose-dependent inhibition of migration. It was strong on highly metastatic Caco cells 48 h after treatment and scraping the Caco cell sheet, with the best reduction in the migration of HepG2 cells caused by the 50% A. reticulata extract. Also, the samples showing a significant IC50 value showed a significant effect in stopping metastasis and invasion of various cancer cell lines, making them an interesting topic for further research.
Collapse
Affiliation(s)
- Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drugs Industries Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Nahla Elzefzafy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt;
| | - Manal F. El-Khadragy
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdulhakeem Alzahrani
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.); (H.M.Y.)
| | - Hany Mohamed Yehia
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.); (H.M.Y.)
- Department of Food Science and Nutrition, Faculty of Home Economics, Helwan University, Helwan 11611, Egypt
| | - Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| |
Collapse
|
4
|
Lama-Muñoz A, Contreras MDM. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022; 11:3671. [PMID: 36429261 PMCID: PMC9689915 DOI: 10.3390/foods11223671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Phenolic compounds are highly valuable food components due to their potential utilisation as natural bioactive and antioxidant molecules for the food, cosmetic, chemical, and pharmaceutical industries. For this purpose, the development and optimisation of efficient extraction methods is crucial to obtain phenolic-rich extracts and, for some applications, free of interfering compounds. It should be accompanied with robust analytical tools that enable the standardisation of phenolic-rich extracts for industrial applications. New methodologies based on both novel extraction and/or analysis are also implemented to characterise and elucidate novel chemical structures and to face safety, pharmacology, and toxicity issues related to phenolic compounds at the molecular level. Moreover, in combination with multivariate analysis, the extraction and analysis of phenolic compounds offer tools for plant chemotyping, food traceability and marker selection in omics studies. Therefore, this study reviews extraction techniques applied to recover phenolic compounds from foods and agri-food by-products, including liquid-liquid extraction, solid-liquid extraction assisted by intensification technologies, solid-phase extraction, and combined methods. It also provides an overview of the characterisation techniques, including UV-Vis, infra-red, nuclear magnetic resonance, mass spectrometry and others used in minor applications such as Raman spectroscopy and ion mobility spectrometry, coupled or not to chromatography. Overall, a wide range of methodologies are now available, which can be applied individually and combined to provide complementary results in the roadmap around the study of phenolic compounds.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain
| |
Collapse
|
5
|
Butnariu M, Quispe C, Herrera-Bravo J, Pentea M, Sarac I, Küşümler AS, Özçelik B, Painuli S, Semwal P, Imran M, Gondal TA, Emamzadeh-Yazdi S, Lapava N, Yousaf Z, Kumar M, Eid AH, Al-Dhaheri Y, Suleria HAR, del Mar Contreras M, Sharifi-Rad J, Cho WC. Papaver Plants: Current Insights on Phytochemical and Nutritional Composition Along with Biotechnological Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2041769. [PMID: 36824615 PMCID: PMC9943628 DOI: 10.1155/2022/2041769] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/13/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
The genus Papaver is highly esteemed in the pharmacy industry, in the culinary field, and as ornamental plants. These plants are also valued in traditional medicine. Among all Papaver species, Papaver somniferum L. (opium poppy) is the most important species in supplying phytochemicals for the formulation of drugs, mainly alkaloids like morphine, codeine, rhoeadine, thebaine, and papaverine. In addition, Papaver plants present other types of phytochemicals, which altogether are responsible for its biological activities. Therefore, this review covers the phytochemical composition of Papaver plants, including alkaloids, phenolic compounds, and essential oils. The traditional uses are reviewed along with their pharmacological activities. Moreover, safety aspects are reported to provide a deep overview of the pharmacology potential of this genus. An updated search was carried out in databases such as Google Scholar, ScienceDirect, and PubMed to retrieve the information. Overall, this genus is a rich source of alkaloids of different types and also contains interesting phenolic compounds, such as anthocyanins, flavonols, and the characteristic indole derivatives nudicaulins. Among other pharmacological properties, numerous preclinical studies have been published about the analgesic, anticancer, antimicrobial, antioxidant, and antidiabetic activities of Papaver plants. Although it highlights the significant impact of this genus for the treatment of a variety of diseases and conditions, as a future prospect, characterization works accompanying preclinical studies are required along with clinical and toxicology studies to establish a correlation between the scientific and traditional knowledge.
Collapse
Affiliation(s)
- Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Marius Pentea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Aylin Seylam Küşümler
- İstanbul Okan University, Nutrition and Dietetics Department, Tuzla, İstanbul, Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co., Maslak, Istanbul 34469, Turkey
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, 248001, Dehradun, Uttarakhand, India
- Himalayan Environmental Studies and Conservation Organization, Prem Nagar, Dehradun, 248001 Uttarakhand, India
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, 248001, Dehradun, Uttarakhand, India
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun-248002, Uttarakhand, India
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | | | - Simin Emamzadeh-Yazdi
- Department of Plant and Soil Sciences, University of Pretoria, Gauteng 0002, South Africa
| | - Natallia Lapava
- Medicine Standardization Department of Vitebsk State Medical University, Belarus
| | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, 400019, Mumbai, India
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, UAE
| | | | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus las Lagunillas, s/n, 23071 Jaén, Spain
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
6
|
Zareena B, Khadim A, Jeelani SUY, Hussain S, Ali A, Musharraf SG. High-Throughput Detection of an Alkaloidal Plant Metabolome in Plant Extracts Using LC-ESI-QTOF-MS. J Proteome Res 2021; 20:3826-3839. [PMID: 34308647 DOI: 10.1021/acs.jproteome.1c00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant alkaloids represent a diverse group of nitrogen-containing natural products. These compounds are considered valuable in drug discovery and development. High-throughput identification of such plant secondary metabolites in complex plant extracts is essential for drug discovery, lead optimization, and understanding the biological pathway. The present study aims to rapidly identify different classes of alkaloids in plant extracts through the liquid chromatography with electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) approach using 161 isolated and purified alkaloids. These are biologically important unique alkaloids belonging to different sub-classes such as isoquinoline, quinoline, indole, tropane, pyridine, piperidine, quinolizidine, aporphine, steroidal, and terpenoid. The majority of these are not available commercially and are known to manifest valuable biological activities. Four pools of a maximum of 50 phytostandards each were prepared, based on their log P value to minimize co-elution for rapid and cost-effective analyses. MS/MS spectra were acquired in the positive ionization mode by using their [M + H]+ and/or [M + Na]+ with both the average collisional energy (25.5-62 eV) and individual collisional energies (10, 20, 30, and 40 eV). Accurate mass, high-resolution mass spectrometry (HR-MS) data, MS/MS data, and retention times were curated for each compound. The developed LC-MS/MS method was successfully used to interrogate and fast dereplicate alkaloids in 13 medicinal plant extracts and a herbal formulation. A total of 56 alkaloids were identified based on the reference standard retention times (RTs), HR-MS spectra, and/or MS/MS spectra. The MS data have been submitted to the MetaboLights online database (MTBLS2914). The mass spectrometric and chromatographic data will be useful for the discovery of new congeners and the study of biological pathways of alkaloids in the plant kingdom.
Collapse
Affiliation(s)
- Bibi Zareena
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Adeeba Khadim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Usama Y Jeelani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Saddam Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
7
|
Intestinal anti-inflammatory activity of the total alkaloid fraction from Fumaria capreolata in the DSS model of colitis in mice. Bioorg Med Chem Lett 2020; 30:127414. [DOI: 10.1016/j.bmcl.2020.127414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
8
|
Torres-Vega J, Gómez-Alonso S, Pérez-Navarro J, Pastene-Navarrete E. Green Extraction of Alkaloids and Polyphenols from Peumus boldus Leaves with Natural Deep Eutectic Solvents and Profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. PLANTS 2020; 9:plants9020242. [PMID: 32069868 PMCID: PMC7076633 DOI: 10.3390/plants9020242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 12/20/2022]
Abstract
Peumus boldus Mol., is a Chilean medicinal tree used for gastrointestinal and liver diseases. Such medicinal properties are associated with the presence of bioactive flavonoids and aporphine alkaloids. In this study, a new green and efficient extraction method used seven natural deep eutectic solvents (NADES) as extraction media. The extraction efficiency of these NADES was assessed, determining the contents of boldine and total phenolic compounds (TPC). Chemical profiling of P. boldus was done by high-performance liquid chromatography coupled to photo diode array detector and electrospray ion-trap mass spectrometry (HPLC-PDA-ESI-IT/MS) and electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry (HPLC-ESI-QTOF-MS). Among the NADES tested, NADES4 (choline chloride-lactic acid) and NADES6 (proline-oxalic acid) enable better extraction of boldine with 0.427 ± 0.018 and 2.362 ± 0.055 mg of boldine g-1 of plant, respectively. Extraction of boldine with NADES4 and NADES6 was more efficient than extractions performed with methanol and water. On the other hand, the highest TPC were obtained using NADES6, 179.442 ± 3.79 mg of gallic acid equivalents (GAE g-1). Moreover, TPC in extracts obtained with methanol does not show significant differences with NADES6. The HPLC-PAD-MS/MS analysis enable the tentative identification of 9 alkaloids and 22 phenolic compounds. The results of this study demonstrate that NADES are a promising green extraction media to extract P. boldus bioactive compounds and could be a valuable alternative to classic organic solvents.
Collapse
Affiliation(s)
- Jeniffer Torres-Vega
- Pharmacognosy laboratory, Department of Pharmacy, Faculty of Pharmacy, Unidad de Desarrollo Tecnológico (UDT), University of Concepción, Concepción 4191996, Chile;
| | - Sergio Gómez-Alonso
- Regional Institute for Applied Scientific Research, Faculty of Chemical Sciences, University of Castilla-La Mancha, Castilla-La Mancha, 10, 1307 Ciudad Real, Spain; (S.G.-A.); (J.P.-N.)
| | - José Pérez-Navarro
- Regional Institute for Applied Scientific Research, Faculty of Chemical Sciences, University of Castilla-La Mancha, Castilla-La Mancha, 10, 1307 Ciudad Real, Spain; (S.G.-A.); (J.P.-N.)
| | - Edgar Pastene-Navarrete
- Pharmacognosy laboratory, Department of Pharmacy, Faculty of Pharmacy, Unidad de Desarrollo Tecnológico (UDT), University of Concepción, Concepción 4191996, Chile;
- Laboratorio de Síntesis y Biotransformación de Productos Naturales, Dpto. Ciencias Básicas, Universidad del Bio-Bio, Chillan 3780000, Chile
- Correspondence: ; Tel.: +56-422463156
| |
Collapse
|
9
|
Petruczynik A, Plech T, Tuzimski T, Misiurek J, Kaproń B, Misiurek D, Szultka-Młyńska M, Buszewski B, Waksmundzka-Hajnos M. Determination of Selected Isoquinoline Alkaloids from Mahonia Aquifolia; Meconopsis Cambrica; Corydalis Lutea; Dicentra Spectabilis; Fumaria Officinalis; Macleaya Cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins (Basel) 2019; 11:toxins11100575. [PMID: 31581717 PMCID: PMC6832497 DOI: 10.3390/toxins11100575] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022] Open
Abstract
Alkaloids have protective functions for plants and can play an important role in living organisms. Alkaloids may have a wide range of pharmacological activities. Many of them have cytotoxic activity. Nowadays, cancer has become a serious public health problem. Searching for effective drugs with anticancer activity is one of the most significant challenges of modern scientific research. The aim of this study was the investigation of cytotoxic activity of extracts obtained from Corydalis lutea root and herb, Dicentra spectabilis root and herb, Fumaria officinalis, Macleaya cordata leaves and herb, Mahonia aquifolia leaves and cortex, Meconopsis cambrica root and herb on FaDu, SCC-25, MCF-7, and MDA-MB-231 cancer cell lines. The cytotoxic activity of these extracts has not been previously tested for these cell lines. The aim was also to quantify selected alkaloids in the investigated extracts by High Performance Liquid Chromatography (HPLC). The analyses of alkaloid content were performed using HPLC in reversed phase (RP) mode using Polar RP column and mobile phase containing acetonitrile, water and ionic liquid (IL). Cytotoxic effect of the tested plant extracts and respective alkaloid standards were examined using human pharyngeal squamous carcinoma cells (FaDu), human tongue squamous carcinoma cells (SCC-25), human breast adenocarcinoma cell line (MCF-7), human triple-negative breast adenocarcinoma cell line (MDA-MB-231). All investigated plant extracts possess cytotoxic activity against tested cancer cell lines: FaDu, SCC-25, MCF-7, and MDA-MB-231. The highest cytotoxic activity against FaDu, SCC-25, and MCF-7 cell lines was estimated for Macleaya cordata leaf extract, while the highest cytotoxic activity against MDA-MB-231 cell line was obtained for Macleaya cordata herb extract. Differences in cytotoxic activity were observed for extracts obtained from various parts of investigated plants. In almost all cases the cytotoxic activity of investigated plant extracts, especially at the highest concentration against tested cell lines was significantly higher than the activity of anticancer drug etoposide. Our investigations exhibit that these plant extracts can be recommended for further in vivo experiments to confirm their anticancer activity.
Collapse
Affiliation(s)
- Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a 20-093 Lublin, Poland.
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a 20-093 Lublin, Poland.
| | - Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a 20-093 Lublin, Poland.
| | - Justyna Misiurek
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a 20-093 Lublin, Poland.
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland.
| | - Dorota Misiurek
- Botanical Garden of Maria Curie-Skłodowska University in Lublin, Sławinkowska 3, 20-810 Lublin, Poland.
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University, Faculty of Chemistry Gagarina 7, PL-87-100 Torun, Poland.
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University, Faculty of Chemistry Gagarina 7, PL-87-100 Torun, Poland.
| | | |
Collapse
|