1
|
Macias-Ceja DC, Mendoza-Ballesteros MT, Ortega-Albiach M, Barrachina MD, Ortiz-Masià D. Role of the epithelial barrier in intestinal fibrosis associated with inflammatory bowel disease: relevance of the epithelial-to mesenchymal transition. Front Cell Dev Biol 2023; 11:1258843. [PMID: 37822869 PMCID: PMC10562728 DOI: 10.3389/fcell.2023.1258843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
In inflammatory bowel disease (IBD), chronic inflammation in the gastrointestinal tract can lead to tissue damage and remodelling, which can ultimately result in fibrosis. Prolonged injury and inflammation can trigger the activation of fibroblasts and extracellular matrix (ECM) components. As fibrosis progresses, the tissue becomes increasingly stiff and less functional, which can lead to complications such as intestinal strictures, obstructive symptoms, and eventually, organ dysfunction. Epithelial cells play a key role in fibrosis, as they secrete cytokines and growth factors that promote fibroblast activation and ECM deposition. Additionally, epithelial cells can undergo a process called epithelial-mesenchymal transition, in which they acquire a more mesenchymal-like phenotype and contribute directly to fibroblast activation and ECM deposition. Overall, the interactions between epithelial cells, immune cells, and fibroblasts play a critical role in the development and progression of fibrosis in IBD. Understanding these complex interactions may provide new targets for therapeutic interventions to prevent or treat fibrosis in IBD. In this review, we have collected and discussed the recent literature highlighting the contribution of epithelial cells to the pathogenesis of the fibrotic complications of IBD, including evidence of EMT, the epigenetic control of the EMT, the potential influence of the intestinal microbiome in EMT, and the possible therapeutic strategies to target EMT. Finally we discuss the pro-fibrotic interactions epithelial-immune cells and epithelial-fibroblasts cells.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | - M. Dolores Barrachina
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
2
|
He E, Jiang Y, Wei D, Wang Y, Sun W, Jia M, Shi B, Cui H. The potential effects and mechanism of echinacoside powder in the treatment of Hirschsprung's Disease. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14222-14240. [PMID: 37679133 DOI: 10.3934/mbe.2023636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Possible complications, such as intestinal obstruction and inflammation of the intestinal tract, can have a detrimental effect on the prognosis after surgery for Hirschsprung disease. The aim of this study was to investigate the potential targets and mechanisms of action of echinacoside to improve the prognosis of Hirschsprung disease. Genes related to the disease were obtained through analysis of the GSE96854 dataset and four databases: OMIM, DisGeNET, Genecard and NCBI. The targets of echinacoside were obtained from three databases: PharmMapper, Drugbank and TargetNet. The intersection of disease genes and drug targets was validated by molecular docking. The valid docked targets were further explored for their expression by using immunohistochemistry. In this study, enrichment analysis was used to explore the mechanistic pathways involved in the genes. Finally, we identified CA1, CA2, CA9, CA12, DNMT1, RIMS2, RPGRIP1L and ZEB2 as the core targets. Except for ZEB2, which is predominantly expressed in brain tissue, the remaining seven genes show tissue specificity and high expression in the gastrointestinal tract. RIMS2 possesses a high mutation phenomenon in pan-cancer, while a validated ceRNA network of eight genes was constructed. The core genes are involved in several signaling pathways, including the one-carbon metabolic process, carbonate dehydratase activity and others. This study may help us to further understand the pharmacological mechanisms of echinacoside and provide new guidance and ideas to guide the treatment of Hirschsprung disease.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Yuhang Jiang
- Tianjin Medical University of Clinical Medicine, Tianjin, China
| | - Diwei Wei
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Yifan Wang
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Wenjing Sun
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Miao Jia
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Bowen Shi
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Hualei Cui
- Tianjin Children's Hospital of Minimally Invasive Surgery, Tianjin, China
| |
Collapse
|
3
|
Boros É, Hegedűs Z, Kellermayer Z, Balogh P, Nagy I. Global alteration of colonic microRNAome landscape associated with inflammatory bowel disease. Front Immunol 2022; 13:991346. [PMID: 36177008 PMCID: PMC9513375 DOI: 10.3389/fimmu.2022.991346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that associates with, among others, increased risk of colorectal cancer. There is a growing evidence that miRNAs have important roles in pathological processes, such as inflammation or carcinogenesis. Understanding the molecular mechanisms such as alterations in microRNAome upon chronic intestinal inflammation is critical for understanding the exact pathomechanism of IBD. Hence, we conducted a genome wide microRNAome analysis by applying miRNA-Seq in a rat model of experimental colitis, validated the data by QPCR, examined the expression of a selection of precursor and mature miRNAs, performed in depth biological interpretation using Ingenuity Pathway Analysis and tested the obtained results on samples derived from human patients. We identified specific, interdependent expression pattern of activator/repressor transcription factors, miRNAs and their direct targets in the inflamed colon samples. Particularly, decreased expression of the miR-200 family members (miR-200a/b/c,-141, and -429) and miR-27b correlates with the reduced level of their enhancers (HNF1B, E2F1), elevated expression of their repressors (ZEB2, NFKB1) and increased expression of their target genes (ZEB2, RUNX1). Moreover, the marked upregulation of six miR-27b target genes (IFI16, GCA, CYP1B1, RUNX1, MEF2C and MMP13) in the inflamed colon tissues is a possible direct consequence of the lack of repression due to the downregulated miRNA-27b expression. Our data indicate that changes in microRNAome are associated with the pathophysiology of IBD, consequently, microRNAs offer potential targets for the diagnosis, prognosis and treatment of IBD.
Collapse
Affiliation(s)
- Éva Boros
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - István Nagy
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
4
|
Quaglio AEV, Santaella FJ, Rodrigues MAM, Sassaki LY, Di Stasi LC. MicroRNAs expression influence in ulcerative colitis and Crohn's disease: A pilot study for the identification of diagnostic biomarkers. World J Gastroenterol 2021; 27:7801-7812. [PMID: 34963743 PMCID: PMC8661377 DOI: 10.3748/wjg.v27.i45.7801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) comprises two distinct diseases, Crohn’s disease (CD) and ulcerative colitis (UC), both of which are chronic, relapsing inflammatory disorders of the gastrointestinal tract with a mostly unknown etiology. The incidence and prevalence of IBD are continually increasing, indicating the need for further studies to investigate the genetic determinants of these diseases. Since microRNAs (miRNAs) regulate protein translation via complementary binding to mRNA, discovering differentially expressed miRNAs (DE) in UC or CD patients could be important for diagnostic biomarker identification, assisting in the appropriate disease differentiation progressing the understanding of IBD pathogenesis.
AIM To determine the miRNA expression profile in UC and CD patients and the potential pathophysiological contributions of differentially expressed miRNA.
METHODS A total of 20 formalin-fixed paraffin-embedded colonic samples were collected from the Pathology Department of Botucatu Medical School at São Paulo State University (Unesp). The diagnosis of UC or CD was based on clinical, endoscopic, radiologic, and histological criteria and confirmed by histopathological analysis at the time of selection. The TaqMan™ Array Human MicroRNA A+B Cards Set v3.0 (Applied Biosystems™) platform was used to analyze 754 miRNAs. Targets of DE-miRNAs were predicted using miRNA Data Integration Portal (mirDIP) and the miRNA Target Interaction database (MiRTarBase). All statistical analyses were conducted using GraphPad Prism software. Parametric and nonparametric data were analyzed using t-tests and Mann-Whitney U tests, respectively.
RESULTS The results showed that of the 754 miRNAs that were initially evaluated, 643 miRNAs were found to be expressed in at least five of the patients who were diagnosed with either CD or UC; the remaining 111 miRNAs were not considered to be expressed in these patients. The expression levels of 28 miRNAs were significantly different between the CD and UC patients (P ≤ 0.05); 13 miRNAs demonstrated a fold-change in expression level greater than 1. Five miRNAs with a downregulated expression were selected for enrichment analysis. The miRNAs whose expression levels were significantly lower in UC patients than in CD patients were enriched in certain signaling pathways that were mostly correlated with cancer-related processes and respective biomarkers.
CONCLUSION MiRNAs could be used to differentiate UC from CD, and differently expressed miRNAs could help explain the distinct pathophysiology of each disease.
Collapse
Affiliation(s)
- Ana Elisa Valencise Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Felipe Jose Santaella
- Department of Pathology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, São Paulo, Brazil
| | | | - Ligia Yukie Sassaki
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, São Paulo, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| |
Collapse
|
5
|
Zhang L, Jiang H, Zhang Y, Wang C, Xia X, Sun Y. GR silencing impedes the progression of castration-resistant prostate cancer through the JAG1/NOTCH2 pathway via up-regulation of microRNA-143-3p. Cancer Biomark 2021; 28:483-497. [PMID: 32568179 PMCID: PMC7505006 DOI: 10.3233/cbm-191271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND: Despite notable progression from a therapeutic point of view, castration resistant prostate cancer (CRPC) remains a clinical significant stumbling block. The current study aimed to elucidate the functional role of the gene glucocorticoid receptor (GR) in CRPC, and identify the contributions of the GR gene in CRPC in connection with microRNA-143-3p (miR-143-3p)/Jagged1 (JAG1)/NOTCH2. METHODS: The expression of GR and miR-143-3p in CRPC tissues and cells as well as JAG1/NOTCH2 expression in CRPC tissues was initially determined by quantitative polymerase chain reaction and Western blot analyses. The relationship among GR, JAG1, NOTCH2 and miR-143-3p was subsequently verified using the dual-luciferase reporter gene assay. ChIP assay confirmed the binding of GR to miR-143-3p promoter. Gain- and loss-function approaches were applied to ascertain the role of GR and miR-143-3p in progression of CRPC. Additionally, xenograft tumor models in nude mice were established to further confirm our results. RESULTS: GR was found to be highly expressed while miR-143-3p was lowly expressed in the CRPC tissues and cells. Silencing GR reduced migration, invasion, proliferation and increased apoptosis of CRPC cells. GR was enriched in the miR-143-3p promoter region and could down-regulate miR-143-3p expression. The overexpression of miR-143-3p led to a reduction in the migration, invasion, proliferation and increased apoptosis of CRPC cells. JAG1 and NOTCH2 were the target genes of miR-143-3p, and GR up-regulated the JAG1/NOTCH2 expression by down-regulating miR-143-3p. Silencing JAG1/NOTCH2 inhibited epithelial-mesenchymal transition and CRPC progression in vitro. Furthermore, the in vitro findings were reproduced in the in vivo experiments. CONCLUSION: The key findings of the current study demonstrated that silencing GR suppressed the progression of CRPC through the JAG1/NOTCH2 pathway via up-regulation of miR-143-3p.
Collapse
Affiliation(s)
- Linshen Zhang
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,2016 Innovation Class, Kunming Medical University, Kunming, Yunnan, China
| | - Hongjun Jiang
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yufan Zhang
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Chenrong Wang
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xixi Xia
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yi Sun
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
6
|
Hoffsten A, Markasz L, Lilja HE, Olsson KW, Sindelar R. Early Postnatal Comprehensive Biomarkers Cannot Identify Extremely Preterm Infants at Risk of Developing Necrotizing Enterocolitis. Front Pediatr 2021; 9:755437. [PMID: 34746064 PMCID: PMC8570110 DOI: 10.3389/fped.2021.755437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Necrotizing enterocolitis (NEC) is a fatal disease where current diagnostic tools are insufficient for preventing NEC. Early predictive biomarkers could be beneficial in identifying infants at high risk of developing NEC. Objective: To explore early biomarkers for predicting NEC in extremely preterm infants (EPIs). Methods: Blood samples were collected on day 2 (median 1.7; range 1.5-2.0) from 40 EPI (median 25 gestational weeks; range 22-27): 11 developed NEC and 29 did not (controls). In each infant, 189 inflammatory, oncological, and vascular proteomic biomarkers were quantified through Proximity Extension Assay. Biomarker expression and clinical data were compared between the NEC group and Controls. Based on biomarker differences, controls were sorted automatically into three subgroups (1, 2, and 3) by a two-dimensional hierarchical clustering analysis. Results: None of the biomarkers differed in expression between all controls and the NEC group. Two biomarkers were higher in Control 1, and 16 biomarkers were lower in Control group 2 compared with the NEC group. No biomarker distinguished Control 3 from the NEC group. Perinatal data were similar in the whole population. Conclusions: Early postnatal comprehensive biomarkers do not identify EPIs at risk of developing NEC in our study. Future studies of predictors of NEC should include sequential analysis of comprehensive proteomic markers in large cohorts.
Collapse
Affiliation(s)
- Alice Hoffsten
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Neonatal Intensive Care Unit, University Children's Hospital, Uppsala, Sweden
| | - Helene Engstrand Lilja
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Section of Pediatric Surgery, University Children's Hospital, Uppsala, Sweden
| | - Karl Wilhelm Olsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Neonatal Intensive Care Unit, University Children's Hospital, Uppsala, Sweden
| |
Collapse
|
7
|
Transcriptome Based Profiling of the Immune Cell Gene Signature in Rat Experimental Colitis and Human IBD Tissue Samples. Biomolecules 2020; 10:biom10070974. [PMID: 32610492 PMCID: PMC7407160 DOI: 10.3390/biom10070974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic intestinal inflammation is characteristic of Inflammatory Bowel Disease (IBD) that is associated with the exaggerated infiltration of immune cells. A complex interplay of inflammatory mediators and different cell types in the colon are responsible for the maintenance of tissue homeostasis and affect pathological conditions. Gene expression alteration of colon biopsies from IBD patients and an in vivo rat model of colitis were examined by RNA-Seq and QPCR, while we used in silico methods, such as Ingenuity Pathway Analysis (IPA) application and the Immune Gene Signature (ImSig) package of R, to interpret whole transcriptome data and estimate immune cell composition of colon tissues. Transcriptome profiling of in vivo colitis model revealed the most significant activation of signaling pathways responsible for leukocyte recruitment and diapedesis. We observed significant alteration of genes related to glycosylation or sensing of danger signals and pro- and anti-inflammatory cytokines and chemokines, as well as adhesion molecules. We observed the elevated expression of genes that implies the accumulation of monocytes, macrophages, neutrophils and B cells in the inflamed colon tissue. In contrast, the rate of T-cells slightly decreased in the inflamed regions. Interestingly, natural killer and plasma cells do not show enrichment upon colon inflammation. In general, whole transcriptome analysis of the in vivo experimental model of colitis with subsequent bioinformatics analysis provided a better understanding of the dynamic changes in the colon tissue of IBD patients.
Collapse
|
8
|
The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells 2019; 8:cells8111461. [PMID: 31752264 PMCID: PMC6912477 DOI: 10.3390/cells8111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggest the significance of inflammation in the progression of cancer, for example the development of colorectal cancer in Inflammatory Bowel Disease (IBD) patients. Long-lasting inflammation in the gastrointestinal tract causes serious systemic complications and breaks the homeostasis of the intestine, where the altered expression of regulatory genes and miRNAs trigger malignant transformations. Several steps lead from acute inflammation to malignancies: epithelial-to-mesenchymal transition (EMT) and inhibitory microRNAs (miRNAs) are known factors during multistage carcinogenesis and IBD pathogenesis. In this review, we outline the interactions between EMT components and miRNAs that may affect cancer development during IBD.
Collapse
|
9
|
Niu CC, Lin SS, Yuan LJ, Lu ML, Ueng SWN, Yang CY, Tsai TT, Lai PL. Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells. Arthritis Res Ther 2019; 21:42. [PMID: 30704538 PMCID: PMC6357369 DOI: 10.1186/s13075-019-1830-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is modulated by microRNAs (miRNAs), with miR-107 expression downregulated during hypoxia. In this study, we investigated the regulation of the miR-107/HMGB1/RAGE pathway in degenerated nucleus pulposus cells (NPCs) after hyperbaric oxygen (HBO) treatment. Methods NPCs were separated from human degenerated intervertebral disc tissues. The control cells were maintained in 5% CO2/95% air, and the hyperoxic cells were exposed to 100% O2 at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The cellular protein and mRNA levels of HMGB1, RAGE, and inducible nitric oxide synthase (iNOS) were assessed, and the phosphorylation of MAPK (p38MAPK, ERK, and JNK) was evaluated. Additionally, cytosolic and nuclear fractions of the IκBα and NF-κB p65 proteins were analyzed, and secreted HMGB1 and metalloprotease (MMP) levels in the conditioned media were quantified. Results Using microarray analyses, 96 miRNAs were identified as upregulated and 66 downregulated following HBO treatment. Based on these results, miR-107 was selected for further investigation. Bioinformatics analyses indicated that the 3′ untranslated region of the HMGB1 mRNA contained the “seed-matched-sequence” for hsa-miR-107, which was validated via dual-luciferase reporter assays. MiR-107 was markedly induced by HBO, and simultaneous suppression of HMGB1 was observed in NPCs. Knockdown of miR-107 resulted in upregulation of HMGB1 expression in HBO-treated cells, and HBO treatment downregulated the mRNA and protein levels of HMGB1, RAGE, and iNOS and the secretion of HMGB1. In addition, HBO treatment upregulated the protein levels of cytosolic IκBα and decreased the nuclear translocation of NF-κB in NPCs. Moreover, HBO treatment downregulated the phosphorylation of p38MAPK, ERK, and JNK and significantly decreased the secretion of MMP-3, MMP-9, and MMP-13. Conclusions HBO inhibits pathways related to HMGB1/RAGE signaling via upregulation of miR-107 expression in degenerated human NPCs.
Collapse
Affiliation(s)
- Chi-Chien Niu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Song-Shu Lin
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Li-Jen Yuan
- Department of Orthopaedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Meng-Ling Lu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Steve W N Ueng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuen-Yung Yang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan
| |
Collapse
|
10
|
Elevated Expression of AXL May Contribute to the Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease Patients. Mediators Inflamm 2018; 2018:3241406. [PMID: 30140167 PMCID: PMC6081531 DOI: 10.1155/2018/3241406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/27/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding the molecular mechanisms inducing and regulating epithelial-to-mesenchymal transition (EMT) upon chronic intestinal inflammation is critical for understanding the exact pathomechanism of inflammatory bowel disease (IBD). The aim of this study was to determine the expression profile of TAM family receptors in an inflamed colon. For this, we used a rat model of experimental colitis and also collected samples from colons of IBD patients. Samples were taken from both inflamed and uninflamed regions of the same colon; the total RNA was isolated, and the mRNA and microRNA expressions were monitored. We have determined that AXL is highly induced in active-inflamed colon, which is accompanied with reduced expression of AXL-regulating microRNAs. In addition, the expression of genes responsible for inducing or maintaining mesenchymal phenotype, such as SNAI1, ZEB2, VIM, MMP9, and HIF1α, were all significantly induced in the active-inflamed colon of IBD patients while the epithelial marker E-cadherin (CDH1) was downregulated. We also show that, in vitro, monocytic and colonic epithelial cells increase the expression of AXL in response to LPS or TNFα stimuli, respectively. In summary, we identified several interacting genes and microRNAs with mutually exclusive expression pattern in active-inflamed colon of IBD patients. Our results shed light onto a possible AXL- and microRNA-mediated regulation influencing epithelial-to-mesenchymal transition in IBD.
Collapse
|
11
|
Abernathy J, Overturf K. Expression of Antisense Long Noncoding RNAs as Potential Regulators in Rainbow Trout with Different Tolerance to Plant-Based Diets. Anim Biotechnol 2018; 30:87-94. [PMID: 29300121 DOI: 10.1080/10495398.2017.1401546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reformulation of aquafeeds in salmonid diets to include more plant proteins is critical for sustainable aquaculture. However, increasing plant proteins can lead to stunted growth and enteritis. Toward an understanding of the regulatory mechanisms behind plant protein utilization, directional RNA sequencing of liver tissues from a rainbow trout strain selected for growth on an all plant-protein diet and a control strain, both fed a plant diet for 12 weeks, were utilized to construct long noncoding RNAs. Antisense long noncoding RNAs were selected for differential expression and functional analyses since they have been shown to have regulatory actions within a genome. A total of 142 unique antisense long noncoding RNAs were differentially expressed between strains, 60 of which could be mapped to a gene. Genes underlying these noncoding RNAs are indicated in lipid metabolism and immunity. Six noncoding transcripts were also found to overlap with differentially expressed protein-coding genes, all of which were co-expressed. Associating variation in regulatory elements between rainbow trout strains with differing tolerance to plant-protein diets will assist in future studies toward increased gains throughout carnivorous aquaculture.
Collapse
Affiliation(s)
- Jason Abernathy
- a USDA, Agricultural Research Service , Harry K. Dupree Stuttgart National Aquaculture Research Center , Stuttgart , AR , USA
| | - Ken Overturf
- b USDA, Agricultural Research Service , Hagerman Fish Culture Experiment Station , Hagerman , ID , USA
| |
Collapse
|