1
|
Que ZJ, Yao JL, Zhou ZY, Yu P, Luo B, Li HG, Liu JX, Xu HX, Tian JH. Jinfukang inhibits lung cancer metastasis by upregulating CX3CL1 to recruit NK cells to kill CTCs. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114175. [PMID: 33933571 DOI: 10.1016/j.jep.2021.114175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Circulating tumor cells (CTCs) play an important role in tumor metastasis and may be a target for metastasis prevention. The traditional Chinese medicine Jinfukang functions to improve immunity, prevent metastasis, and prolong lung cancer patient survival periods. Yet, whether Jinfukang prevents metastasis by regulating immune cells to clearance CTCs is still unknown. AIM OF THE STUDY To explore the anti-metastasis mechanism of Jinfukang from the perspective of regulating NK cells to clear CTCs. MATERIALS AND METHODS CTC-TJH-01 cell was treated with Jinfukang. Cytokine chip was used to detect cytokines in cell culture supernatant. Lymphocyte recruitment assay was detected by Transwell and flow cytometry. Protein expression was analysis by Western blot. LDH kit was used to detect cytotoxicity. NOD-SCID mice used for tail vein injection to study lung metastasis. RESULTS Jinfukang could promote the expression and secretion of the chemokine CX3CL1 by CTCs. In addition, Jinfukang could promote the recruitment of natural killer (NK) cells by CTCs and significantly increase the cytotoxic effect of NK cells on CTCs. Moreover, Jinfukang could upregulate the expression of FasL and promote the secretion of TNF-α by NK cells and that NK cells could induce the apoptosis of CTCs through the Fas/FasL signaling pathway. Finally, we confirmed that Jinfukang could promote NK cells to kill CTCs and then inhibit lung cancer metastasis in vivo. The above effects of Jinfukang could be partially reversed by an anti-CX3CL1 mAb. CONCLUSIONS These results suggest that Jinfukang may prevent lung cancer metastasis by enhancing the clearance of CTCs in the peripheral blood by NK cells, providing evidence for the anti-metastasis effect of Jinfukang.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Chemokine CX3CL1/antagonists & inhibitors
- Chemokine CX3CL1/genetics
- Chemokine CX3CL1/metabolism
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- GPI-Linked Proteins/metabolism
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lung Neoplasms/complications
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Male
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Metastasis/immunology
- Neoplasm Metastasis/prevention & control
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/immunology
- Neoplastic Cells, Circulating/pathology
- Receptors, Death Domain/metabolism
- Signal Transduction/drug effects
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/drug effects
- fas Receptor/metabolism
- Mice
Collapse
Affiliation(s)
- Zu-Jun Que
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Jia-Liang Yao
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Zhi-Yi Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Pan Yu
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Bin Luo
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - He-Gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Jia-Xiang Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Jian-Hui Tian
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China; Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| |
Collapse
|
2
|
Dang X, Zhao W, Li C, Yang H, Li D, Zhang S, Jin T. Impact of COL6A4P2 gene polymorphisms on the risk of lung cancer: A case-control study. PLoS One 2021; 16:e0252082. [PMID: 34019596 PMCID: PMC8139505 DOI: 10.1371/journal.pone.0252082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Lung cancer (LC) is a malignant tumor that poses the greatest threat to human health and life. Most studies suggested that the occurrence of LC is associated with environmental and genetic factors. We aimed to explore the association between COL6A4P2 single nucleotide polymorphisms (SNPs) and CHD risk in the Chinese Southern Han population. Based on the 'case-control' experimental design (510 cases and 495 controls), we conducted an association study between five candidate COL6A4P2 SNPs and the corresponding LC risk. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by logistic regression to analyze the LC susceptibility under different genetic models. The results showed that COL6A4P2 rs34445363 was significantly associated with LC risk under alleles model (OR = 1.26, 95%CI: 1.01-1.58, p = 0.038). In addition, rs34445363 was also significantly associated with LC risk under the log-additive model (OR = 1.26, 95%CI: 1.01-1.58, p = 0.041). The results of subgroup analysis showed that rs34445363 (OR = 1.42, 95%CI: 1.03-1.95, p = 0.033) and rs61733464 (OR = 0.72, 95%CI: 0.52-0.99, p = 0.048) were both significantly associated with LC risk in the log-additive model among participants who were ≤ 61 years old. We also found that the variation of rs34445363 (GA vs. GG, OR = 1.73, 95%CI: 1.04-2.86, p = 0.034) and rs77941834 (TA vs. TT, OR = 1.88, 95%CI: 1.06-3.34, p = 0.032) were associated with LC risk in the codominant model among female participants. Our study is the first to find that COL6A4P2 gene polymorphism is associated with LC risk in the Chinese Han population. Our study provides a basic reference for individualized LC prevention.
Collapse
Affiliation(s)
- Xiaodong Dang
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Shaanxi, Xi’an, China
| | - Wenhui Zhao
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Shaanxi, Xi’an, China
| | - Chen Li
- Xi’an 21st Century Biological Sicence and Technology Co., Ltd, Shaanxi, Xi’an, China
| | - Hua Yang
- Xi’an 21st Century Biological Sicence and Technology Co., Ltd, Shaanxi, Xi’an, China
| | - Dianzhen Li
- Xi’an 21st Century Biological Sicence and Technology Co., Ltd, Shaanxi, Xi’an, China
| | - Shanshan Zhang
- Xi’an 21st Century Biological Sicence and Technology Co., Ltd, Shaanxi, Xi’an, China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Shaanxi, Xi’an, China
| |
Collapse
|
3
|
Anticancer Effects of Herbal Medicine Compounds and Novel Formulations: a Literature Review. J Gastrointest Cancer 2021; 51:765-773. [PMID: 32140897 DOI: 10.1007/s12029-020-00385-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Many agents disrupt the cell cycle and its signaling circuits leading to cancer progress. Cancer therapy is performed by surgery, radiation, and chemical drugs remaining some side effects. OBJECTIVE To evaluate the anticancer traits of herbal medicines. METHODS We collected previously published data in searching engines (Web of Science, PubMed, Medline, and SCOPUS) by searching key words "herbal medicine," "anticancer effect," "compounds," and "fractions." RESULTS Herbal medicines have unraveled anticancer effects mostly through cancer cells apoptosis via blocking NF-κB pathway by curcumin and terpenoides; CD95 signaling and enhancement of CD95L expression by resveratrol; and inhibiting tyrosine kinas, angiogenesis, and cell cycle arrest in G2/M phase by β-lapachone-genistein and cytochrome-c release into the cytosol and caspase-9 activation by biocalein and quercetin. Additionally, impeding cell cycle in the G1 phase in ovarian cancer cells by 7-hydroxystaurosporine, immune cells enrichment (neutrophils and NK cells activation by Viscum album L., T cells and NK cells activation and cytokines such as tumor necrosis factor release by Ganoderma lucidum and microRNAs regulation (by Sinomeniumacutum, shikonin, Oleaeuropaea, curcumin and ginseng). These effects have implications for proper cancer cells elimination. It has been revealed that cytotoxic effects of herbal compounds (mostly those secondary metabolites) have exerted anticancer properties against several cancer cell lines. In addition, targeting microRNAs, nanoparticle-assisted herbal synergism, and novel drug delivery systems and combination chemotherapies have also emerged exerting higher efficacies for specific cell targeting as novel cancer therapy approaches. CONCLUSION Considering side effects, toxicity, and higher costs of common cancer therapy approaches, application of novel herbal medicine-based therapies will confer promising insights for health outcomes.
Collapse
|
4
|
Que ZJ, Yang Y, Liu HT, Shang-Guan WJ, Yu P, Zhu LH, Li HG, Liu HM, Tian JH. Jinfukang regulates integrin/Src pathway and anoikis mediating circulating lung cancer cells migration. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113473. [PMID: 33068649 DOI: 10.1016/j.jep.2020.113473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metastasis is the main cause of death in lung cancer patients. Circulating tumor cells (CTCs) may be an important target of metastasis intervention. Previous studies have shown that Jinfukang could prevent the recurrence and metastasis of lung cancer, and we have established a circulating lung tumor cell line CTC-TJH-01. However, whether Jinfukang inhibition of lung cancer metastasis is related to CTCs is still unknown. AIM OF THE STUDY To further explore the mechanism of Jinfukang in anti-metastasis of lung cancer from the perspective of intervention of CTCs. MATERIALS AND METHODS CTC-TJH-01 and H1975 cells were treated with Jinfukang. Cell viability was detected by CCK8, and the cell apoptosis was detected by flow cytometry. Transwell was used to detected cell migration and invasion. Cell anoikis was detected by anoikis detection kit. Protein expression was analysis by Western blot. RESULTS Jinfukang could inhibit the proliferation, migration and invasion of CTC-TJH-01 and H1975 cells. Besides, Jinfukang could also induce anoikis in CTC-TJH-01 and H1975 cells. Analysis of the mRNA expression profile showed ECM-receptor interaction and focal adhesion were regulated by Jinfukang. Moreover, it was also find that Jinfukang significantly inhibited integrin/Src pathway in CTC-TJH-01 and H1975 cells. When suppress the expression of integrin with ATN-161, it could promote Jinfukang to inhibit migration and induce anoikis in CTC-TJH-01 and H1975 cells. CONCLUSIONS Our results indicate that the migration and invasion of CTCs are inhibited by Jinfukang, and the mechanism may involve the suppression of integrin/Src axis to induce anoikis. These data suggest that Jinfukang exerts anti-metastatic effects in lung cancer may through anoikis.
Collapse
Affiliation(s)
- Zu-Jun Que
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yun Yang
- Department of Oncology, Shanghai Traditional Chinese Medicine-Intergrated Hospital, Shanghai, China.
| | - Hai-Tao Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wen-Ji Shang-Guan
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pan Yu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li-Hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - He-Gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huai-Min Liu
- Department of Integrative Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Province, China.
| | - Jian-Hui Tian
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Que ZJ, Luo B, Wang CT, Qian FF, Jiang Y, Li Y, Han XH, Li HG, Liu JX, Tian JH. Proteomics analysis of tumor exosomes reveals vital pathways of Jinfukang inhibiting circulating tumor cells metastasis in lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112802. [PMID: 32240782 DOI: 10.1016/j.jep.2020.112802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinfukang has long been used for the clinical treatment of lung cancer. Previous studies have shown that Jinfukang can induce the apoptosis of circulating tumor cells by intervening ROS-mediated DNA damage pathway. However, whether Jinfukang can inhibit the metastasis of circulating tumor cells and its mechanism are still unclear. AIM OF THE STUDY To further investigate the mechanism of Jinfukang in anti-metastasis of lung cancer from the perspective of intervention of tumor exosomes. MATERIALS AND METHODS The invadopodia formation was determined with immunofluorescence. Invasion and migration were detected using the Transwell assay. Ultracentrifugation was used to isolate exosomes. Exosomes were characterized by electron microscopy, nanoparticle tracking analysis and immunoblotting, and the protein profile was evaluated by proteomic analysis. The molecular functions, biological processes and signaling pathway enrichment analysis were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Key differentially expressed proteins were verified by Western blot. RESULTS Jinfukang can inhibit the expression of MMP14, cortactin, Tks5 and the formation of invadopodia of CTC-TJH-01 cells. Furthermore, Jinfukang can significantly inhibit the invasion and migration of CTC-TJH-01 cells. The diameter of exosomes extracted from the CTC-TJH-01 cells treated by Jinfukang was 30-100 nm, and the exosomal markers CD63, CD81 and TSG101 were expressed. We identified 680 deferentially expressed proteins. Gene oncology analysis indicated that exosomes were mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The ingenuity pathway analysis showed that the EGF pathway was significantly inhibited, whereas the GP6 signaling pathway was significantly activated. We also confirmed that Jinfukang inhibited the expression of EGF pathway-related proteins in CTC-TJH-01 cells. Besides, when EGF was used to activate EGF signaling pathway, the inhibition of Jinfukang on CTC cell metastasis was reversed. CONCLUSION Jinfukang inhibits the metastasis of CTC-TJH-01 cells through the EGF pathway.
Collapse
Affiliation(s)
- Zu-Jun Que
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Luo
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Chen-Tong Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Fang-Fang Qian
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yi Jiang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Xiang-Hui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - He-Gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Jia-Xiang Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Jian-Hui Tian
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yang W, Kang Y, Zhao Q, Bi L, Jiao L, Gu Y, Lu J, Yao J, Zhou D, Sun J, Zhao X, Xu L. Herbal formula Yangyinjiedu induces lung cancer cell apoptosis via activation of early growth response 1. J Cell Mol Med 2019; 23:6193-6202. [PMID: 31237749 PMCID: PMC6714142 DOI: 10.1111/jcmm.14501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been extensively used in clinical practices and proven to be effective against cancer. However, the underlying mechanisms remain to be investigated. In this study, we examined the anticancer activities of Chinese herbal formula Yangyinjiedu (YYJD) and found that YYJD exhibits cytotoxicity against lung cancer cells. Transcriptome analysis indicated that 2178 genes were differentially expressed (P < 0.05) upon YYJD treatment, with 1464 being (67.2%) up‐regulated. Among these, we found that the tumour suppressor early growth response 1 (EGR1) is the most activated. We demonstrated that EGR1 contributes to YYJD‐induced apoptosis in A549. Through dissecting EGR1‐associated transcriptional network, we identified 275 genes as EGR1 direct targets, some targets are involved in apoptosis. Lastly, we observed that YYJD enhances EGR1 expression and induces cell death in tumour xenografts. Collectively, these findings suggest that YYJD exerts its anticancer activities through EGR1 activation, thus providing the evidence for its potential clinical application for lung cancer patients.
Collapse
Affiliation(s)
- Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhao Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Wang Q, Jiao L, Wang S, Chen P, Bi L, Zhou D, Yao J, Li J, Chen Z, Jia Y, Zhang Z, Shen W, Zhu W, Xu J, Gao Y, Gong Y, Xu L. Maintenance Chemotherapy With Chinese Herb Medicine Formulas vs. With Placebo in Patients With Advanced Non-small Cell Lung Cancer After First-Line Chemotherapy: A Multicenter, Randomized, Double-Blind Trial. Front Pharmacol 2018; 9:1233. [PMID: 30459612 PMCID: PMC6232388 DOI: 10.3389/fphar.2018.01233] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/11/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Chinese Herb Medicine Formulas (CHMF) was reported to improve the quality of life (QoL) in advanced NSCLC patients. The present study was designed to investigate whether maintenance chemotherapy plus CHMF in patients would improve QoL and progression-free survival (PFS). Methods: Seventy-one patients were enrolled from 8 medical centers in China, and were randomly assigned to a maintenance chemotherapy plus CHMF group (n = 35) or a maintenance chemotherapy plus placebo group (n = 36). The outcome measures included PFS, Karnofsky performance status (KPS) scores, QoL (assessed with the lung cancer symptom scale (LCSS) questionnaire), and adverse events (AEs). Results: Patients in the CHMF group showed significant improvements in median PFS (HR = 0.55, 95% CI 0.28-0.88, P = 0.019), KPS scores (P = 0.047), fatigue (cycle [C] 3: P = 0.03), interference with daily activities (C3: P = 0.04) and dyspnea (C2: P = 0.03) compared with patients in the placebo group. Compared with the placebo group, the incidence of AEs decreased in the CHMF group, including loss of appetite (C2: P = 0.011, C4: P = 0.004) and dry mouth (C4: P = 0.011). Conclusion: The essential finding of our study is that maintenance chemotherapy combined with CHMF may prolong PFS, relieve symptoms, improve QoL and alleviate the side effects.
Collapse
Affiliation(s)
- Qin Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengfei Wang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Peiqi Chen
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialin Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Li
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiwei Chen
- Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yingjie Jia
- Department of Oncology, First Hospital Affiliated to Tianjin College of Traditional Chinese Medicine, Tianjin, China
| | - Ziwen Zhang
- Department of Oncology, Changshu the 2nd People's Hospital, Jiangsu, China
| | - Weisheng Shen
- Department of Oncology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiangsu, China
| | - Weirong Zhu
- Department of Traditional Chinese Medicine, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianfang Xu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Tumor Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|