1
|
Phenotypes of Motor Deficit and Pain after Experimental Spinal Cord Injury. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060262. [PMID: 35735505 PMCID: PMC9220047 DOI: 10.3390/bioengineering9060262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Motor disability is a common outcome of spinal cord injury (SCI). The recovery of motor function after injury depends on the severity of neurotrauma; motor deficit can be reversible, at least partially, due to the innate tissue capability to recover, which, however, deteriorates with age. Pain is often a comorbidity of injury, although its prediction remains poor. It is largely unknown whether pain can attend motor dysfunction. Here, we implemented SCI for modelling severe and moderate neurotrauma and monitored SCI rats for up to 5 months post-injury to determine the profiles of both motor deficit and nociceptive sensitivity. Our data showed that motor dysfunction remained persistent after a moderate SCI in older animals (5-month-old); however, there were two populations among young SCI rats (1 month-old) whose motor deficit either declined or exacerbated even more over 4–5 weeks after identical injury. All young SCI rats displayed changed nociceptive sensitivity in thermal and mechanical modalities. The regression analysis of the changes revealed a population trend with respect to hyper- or hyposensitivity/motor deficit. Together, our data describe the phenotypes of motor deficit and pain, the two severe complications of neurotrauma. Our findings also suggest the predictability of motor dysfunction and pain syndromes following SCI that can be a hallmark for long-term rehabilitation and recovery after injury.
Collapse
|
2
|
Xu X, Wang L, Jing J, Zhan J, Xu C, Xie W, Ye S, Zhao Y, Zhang C, Huang F. Conductive Collagen-Based Hydrogel Combined With Electrical Stimulation to Promote Neural Stem Cell Proliferation and Differentiation. Front Bioeng Biotechnol 2022; 10:912497. [PMID: 35782495 PMCID: PMC9247657 DOI: 10.3389/fbioe.2022.912497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Injectable biomimetic hydrogels are a promising strategy for enhancing tissue repair after spinal cord injury (SCI) by restoring electrical signals and increasing stem cell differentiation. However, fabricating hydrogels that simultaneously exhibit high electrical conductivities, excellent mechanical properties, and biocompatibility remains a great challenge. In the present study, a collagen-based self-assembling cross-linking polymer network (SCPN) hydrogel containing poly-pyrrole (PPy), which imparted electroconductive properties, is developed for potential application in SCI repair. The prepared collagen/polypyrrole (Col/PPy)-based hydrogel exhibited a continuous and porous structure with pore sizes ranging from 50 to 200 μm. Mechanical test results indicated that the Young’s moduli of the prepared hydrogels were remarkably enhanced with PPy content in the range 0–40 mM. The conductivity of Col/PPy40 hydrogel was 0.176 ± 0.07 S/cm, which was beneficial for mediating electrical signals between tissues and accelerating the rate of nerve repair. The investigations of swelling and degradation of the hydrogels indicated that PPy chains interpenetrated and entangled with the collagen, thereby tightening the network structure of the hydrogel and improving its stability. The cell count kit-8 (CCK-8) assay and live/dead staining assay demonstrated that Col/PPy40 coupled with electrical simulation promoted the proliferation and survival of neural stem cells (NSCs). Compared with the other groups, the immunocytochemical analysis, qPCR, and Western blot studies suggested that Col/PPy40 coupled with ES maximally induced the differentiation of NSCs into neurons and inhibited the differentiation of NSCs into astrocytes. The results also indicated that the neurons in ES-treated Col/PPy40 hydrogel have longer neurites (170.8 ± 37.2 μm) and greater numbers of branch points (4.7 ± 1.2). Therefore, the prepared hydrogel system coupled with ES has potential prospects in the field of SCI treatment.
Collapse
Affiliation(s)
- Xinzhong Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Wang
- Department of Orthopaedics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junfeng Zhan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chungui Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wukun Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chi Zhang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Chi Zhang, ; Fei Huang,
| | - Fei Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Chi Zhang, ; Fei Huang,
| |
Collapse
|
3
|
Ghatas MP, Khan MR, Gorgey AS. Skeletal muscle stiffness as measured by magnetic resonance elastography after chronic spinal cord injury: a cross-sectional pilot study. Neural Regen Res 2021; 16:2486-2493. [PMID: 33907038 PMCID: PMC8374562 DOI: 10.4103/1673-5374.313060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Skeletal muscle stiffness is altered after spinal cord injury (SCI). Assessing muscle stiffness is essential for rehabilitation and pharmaceutical interventions design after SCI. The study used magnetic resonance elastography to assess the changes in stiffness after chronic SCI compared to matched able-bodied controls and determine its association with muscle size, spasticity, and peak torque in persons with SCI. Previous studies examined the association between muscle stiffness and spasticity, however, we are unaware of other studies that examined the effects of muscle composition on stiffness after SCI. Ten participants (one female) with chronic SCI and eight (one female) matched able-bodied controls participated in this cross-sectional study. Magnetic resonance elastography was utilized to monitor stiffness derived from shear waves propagation. Modified Ashworth scale was used to evaluate spasticity scores in a blinded fashion. Peak isometric and isokinetic torques were measured using a biodex dynamometer. Stiffness values were non-significantly lower (12.5%; P = 0.3) in the SCI group compared to able-bodied controls. Moreover, stiffness was positively related to vastus lateralis whole muscle cross-sectional area (CSA) (r2 = 0.64, P < 0.005) and vastus lateralis absolute muscle CSA after accounting for intramuscular fat (r2 = 0.78, P < 0.0007). Stiffness was also positively correlated to both isometric (r2= 0.55-0.57, P < 0.05) and isokinetic peak (r2= 0.46-0.48, P < 0.05) torques. Our results suggest that larger clinical trial is warranted to confirm the preliminary findings that muscle stiffness is altered after SCI compared to healthy controls. Stiffness appeared to be influenced by infiltration of intramuscular fat and modestly by the spasticity of the paralyzed muscles. The preliminary data indicated that the relationship between muscle stiffness and peak torque is not altered with changing the frequency of pulses or angular velocities. All study procedures were approved by the Institutional Review Board at the Hunter Holmes McGuire VA Medical Center, USA (IRB #: 02314) on May 3, 2017.
Collapse
Affiliation(s)
- Mina P Ghatas
- Department of Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - M Rehan Khan
- Department of Radiology, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ashraf S Gorgey
- Department of Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Ternifi R, Kammoun M, Pouletaut P, Subramaniam M, Hawse JR, Bensamoun SF. Ultrasound image processing to estimate the structural and functional properties of mouse skeletal muscle. Biomed Signal Process Control 2020; 56. [DOI: 10.1016/j.bspc.2019.101735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Development of a novel multiphysical approach for the characterization of mechanical properties of musculotendinous tissues. Sci Rep 2019; 9:7733. [PMID: 31118478 PMCID: PMC6531478 DOI: 10.1038/s41598-019-44053-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/03/2019] [Indexed: 12/02/2022] Open
Abstract
At present, there is a lack of well-validated protocols that allow for the analysis of the mechanical properties of muscle and tendon tissues. Further, there are no reports regarding characterization of mouse skeletal muscle and tendon mechanical properties in vivo using elastography thereby limiting the ability to monitor changes in these tissues during disease progression or response to therapy. Therefore, we sought to develop novel protocols for the characterization of mechanical properties in musculotendinous tissues using atomic force microscopy (AFM) and ultrasound elastography. Given that TIEG1 knockout (KO) mice exhibit well characterized defects in the mechanical properties of skeletal muscle and tendon tissue, we have chosen to use this model system in the present study. Using TIEG1 knockout and wild-type mice, we have devised an AFM protocol that does not rely on the use of glue or chemical agents for muscle and tendon fiber immobilization during acquisition of transversal cartographies of elasticity and topography. Additionally, since AFM cannot be employed on live animals, we have also developed an ultrasound elastography protocol using a new linear transducer, SLH20-6 (resolution: 38 µm, footprint: 2.38 cm), to characterize the musculotendinous system in vivo. This protocol allows for the identification of changes in muscle and tendon elasticities. Such innovative technological approaches have no equivalent to date, promise to accelerate our understanding of musculotendinous mechanical properties and have numerous research and clinical applications.
Collapse
|
6
|
Wang Q, Zhang P, Li P, Song X, Hu H, Li X, Chen W, Wang X. Ultrasonography Monitoring of Trauma-Induced Heterotopic Ossification: Guidance for Rehabilitation Procedures. Front Neurol 2018; 9:771. [PMID: 30271377 PMCID: PMC6149315 DOI: 10.3389/fneur.2018.00771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
Abstract
Traumatic injury is one of varying causes of heterotopic ossification (HO). After HO occurrence, rehabilitation training need alterations to avoid the aggravation of HO. Therefore, monitoring of HO development plays an important role in the rehabilitation procedure. The aims of this study are to evaluate the post-traumatic HO occurring at various joints, to describe the features of HO development in ultrasound images, and to provide a guidance for the orthopedist to make individualized rehabilitation therapy. Eight subjects with the post-traumatic HO were recruited in this study. The joints on the injured side was examined by plain radiography. The joints on the injured side and the corresponding sites on the uninjured sides were scanned by ultrsonography. The HO tissues were segmented automatically using a semi-supervised segmentation algorithm. Then the HO tissues were evaluated in comparison with the corresponding region of the uninjured side. During the development stage of immature HO, ultrasonography was sensitive to observe the involved soft tissue and the calcification of HO. The characteristics of HO tissues in ultrasound image included the hyperechoic mass occasionally accompanied with acoustic shadow and the irregular muscular architecture. It was found that the mean grayscale value of HO was significantly higher (p < 0.001) than that of the uninjured side at the middle and late stages. During the development period of HO, the HO grayscale value gradually increased and the mean grayscale of value of mature HO was significantly higher (p < 0.05) than that of immature HO. According to the information of HO provided by ultrasound, the orthopedist properly adjusted the rehabilitation treatment. The results demonstrated that the visualization of HO using ultrasonography revealed the development of HO in the muscle tissues around the injured joints and thus provide a guidance for the orthopedist to make individualized rehabilitation therapy. Ultrasound could be a useful imaging modality for quantitative evaluation of HO during the rehabilitation of traumatic injury.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Peizhen Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Pengdong Li
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Xiangfen Song
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Huijing Hu
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Xuan Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wufan Chen
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Xiaoyun Wang
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| |
Collapse
|