1
|
Jadli A, Gomes K, Ballasy N, Wijesuriya T, Belke D, Fedak P, Patel V. Inhibition of smooth muscle cell death by Angiotensin 1-7 protects against abdominal aortic aneurysm. Biosci Rep 2023; 43:BSR20230718. [PMID: 37947205 PMCID: PMC10695742 DOI: 10.1042/bsr20230718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) represents a debilitating vascular disease characterized by aortic dilatation and wall rupture if it remains untreated. We aimed to determine the effects of Ang 1-7 in a murine model of AAA and to investigate the molecular mechanisms involved. Eight- to 10-week-old apolipoprotein E-deficient mice (ApoEKO) were infused with Ang II (1.44 mg/kg/day, s.c.) and treated with Ang 1-7 (0.576 mg/kg/day, i.p.). Echocardiographic and histological analyses showed abdominal aortic dilatation and extracellular matrix remodeling in Ang II-infused mice. Treatment with Ang 1-7 led to suppression of Ang II-induced aortic dilatation in the abdominal aorta. The immunofluorescence imaging exhibited reduced smooth muscle cell (SMC) density in the abdominal aorta. The abdominal aortic SMCs from ApoEKO mice exhibited markedly increased apoptosis in response to Ang II. Ang 1-7 attenuated cell death, as evident by increased SMC density in the aorta and reduced annexin V/propidium iodide-positive cells in flow cytometric analysis. Gene expression analysis for contractile and synthetic phenotypes of abdominal SMCs showed preservation of contractile phenotype by Ang 1-7 treatment. Molecular analyses identified increased mitochondrial fission, elevated cellular and mitochondrial reactive oxygen species (ROS) levels, and apoptosis-associated proteins, including cytochrome c, in Ang II-treated aortic SMCs. Ang 1-7 mitigated Ang II-induced mitochondrial fission, ROS generation, and levels of pro-apoptotic proteins, resulting in decreased cell death of aortic SMCs. These results highlight a critical vasculo-protective role of Ang 1-7 in a degenerative aortic disease; increased Ang 1-7 activity may provide a promising therapeutic strategy against the progression of AAA.
Collapse
Affiliation(s)
- Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Karina P. Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Noura N. Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Tishani Methsala Wijesuriya
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Darrell Belke
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W.M. Fedak
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Maas EJ, Nievergeld AHM, Fonken JHC, Thirugnanasambandam M, van Sambeek MRHM, Lopata RGP. 3D-Ultrasound Based Mechanical and Geometrical Analysis of Abdominal Aortic Aneurysms and Relationship to Growth. Ann Biomed Eng 2023; 51:2554-2565. [PMID: 37410199 PMCID: PMC10598132 DOI: 10.1007/s10439-023-03301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
The heterogeneity of progression of abdominal aortic aneurysms (AAAs) is not well understood. This study investigates which geometrical and mechanical factors, determined using time-resolved 3D ultrasound (3D + t US), correlate with increased growth of the aneurysm. The AAA diameter, volume, wall curvature, distensibility, and compliance in the maximal diameter region were determined automatically from 3D + t echograms of 167 patients. Due to limitations in the field-of-view and visibility of aortic pulsation, measurements of the volume, compliance of a 60 mm long region and the distensibility were possible for 78, 67, and 122 patients, respectively. Validation of the geometrical parameters with CT showed high similarity, with a median similarity index of 0.92 and root-mean-square error (RMSE) of diameters of 3.5 mm. Investigation of Spearman correlation between parameters showed that the elasticity of the aneurysms decreases slightly with diameter (p = 0.034) and decreases significantly with mean arterial pressure (p < 0.0001). The growth of a AAA is significantly related to its diameter, volume, compliance, and surface curvature (p < 0.002). Investigation of a linear growth model showed that compliance is the best predictor for upcoming AAA growth (RMSE 1.70 mm/year). To conclude, mechanical and geometrical parameters of the maximally dilated region of AAAs can automatically and accurately be determined from 3D + t echograms. With this, a prediction can be made about the upcoming AAA growth. This is a step towards more patient-specific characterization of AAAs, leading to better predictability of the progression of the disease and, eventually, improved clinical decision making about the treatment of AAAs.
Collapse
Affiliation(s)
- Esther Jorien Maas
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.
| | - Arjet Helena Margaretha Nievergeld
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Judith Helena Cornelia Fonken
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mirunalini Thirugnanasambandam
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marc Rodolph Henricus Maria van Sambeek
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | |
Collapse
|
3
|
Margaretha Nievergeld AH, Maas EJ, de Ruijter J, Cornelia Fonken JH, Henricus Maria van Sambeek MR, Paulus Lopata RG. Automatic Segmentation and Mechanical Characterisation of the Intraluminal Thrombus and Arterial Wall of Abdominal Aortic Aneurysms Using Time Resolved 3D Ultrasound Images. Eur J Vasc Endovasc Surg 2023; 66:418-427. [PMID: 36963747 DOI: 10.1016/j.ejvs.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE This study proposed a method for semi-automatic segmentation of abdominal aortic aneurysms (AAAs) and their intraluminal thrombus (ILT), based on time resolved 3D ultrasound (US), and validated results with computed tomography (CT). Mechanical properties of both wall and ILT were determined, and possible correlations with ILT size and blood pressure were investigated. METHODS A semi-automatic segmentation algorithm was developed combining a star-Kalman approach with a 3D snake algorithm. The segmented geometries of both lumen and inner vessel wall were validated with both manual US based segmentations and CT based segmentations. Finally, the lumen and vessel wall distensibility and ILT compressibility were estimated and correlated with ILT size and blood pressure. RESULTS For the vessel wall and lumen, the median Similarity Index (SI) was 92% (IQR 90, 94%) and 83% (IQR 75, 87%), respectively. The distensibility of the vessel wall could be determined in 37 of 40 cases and had a median value of 0.28 10-5 Pa-1 (IQR 0.18, 0.51 ×10-5). The median systolic to diastolic volume change of the ILT was determined successfully in 21 of 40 patients, and was -0.57% (IQR -1.1, 1.2%). The vessel and lumen distensibility showed a strong correlation with the systolic pressure (p < .010), rather than with the diastolic pressure. Lumen distensibility was strongly correlated with ILT thickness (p = .023). The performance of the semi-automatic segmentation algorithm was shown to be as good as the manual segmentations and highly dependent on the visibility of the ILT (limited contrast in seven patients and clutter in nine patients). CONCLUSION This study has shown promising results for mechanical characterisation of the vessel, and ILT, including a correlation between distensibility, ILT size, and blood pressure. For future work, the inclusion rate needs to be increased by improving the image contrast with novel US techniques.
Collapse
Affiliation(s)
- Arjet Helena Margaretha Nievergeld
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.
| | - Esther Jorien Maas
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Joerik de Ruijter
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Judith Helena Cornelia Fonken
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marcus Rodolph Henricus Maria van Sambeek
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | |
Collapse
|
4
|
Bianchini E, Lønnebakken MT, Wohlfahrt P, Piskin S, Terentes‐Printzios D, Alastruey J, Guala A. Magnetic Resonance Imaging and Computed Tomography for the Noninvasive Assessment of Arterial Aging: A Review by the VascAgeNet COST Action. J Am Heart Assoc 2023; 12:e027414. [PMID: 37183857 PMCID: PMC10227315 DOI: 10.1161/jaha.122.027414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic resonance imaging and computed tomography allow the characterization of arterial state and function with high confidence and thus play a key role in the understanding of arterial aging and its translation into the clinic. Decades of research into the development of innovative imaging sequences and image analysis techniques have led to the identification of a large number of potential biomarkers, some bringing improvement in basic science, others in clinical practice. Nonetheless, the complexity of some of these biomarkers and the image analysis techniques required for their computation hamper their widespread use. In this narrative review, current biomarkers related to aging of the aorta, their founding principles, the sequence, and postprocessing required, and their predictive values for cardiovascular events are summarized. For each biomarker a summary of reference values and reproducibility studies and limitations is provided. The present review, developed in the COST Action VascAgeNet, aims to guide clinicians and technical researchers in the critical understanding of the possibilities offered by these advanced imaging modalities for studying the state and function of the aorta, and their possible clinically relevant relationships with aging.
Collapse
Affiliation(s)
| | - Mai Tone Lønnebakken
- Department of Clinical ScienceUniversity of BergenBergenNorway
- Department of Heart DiseaseHaukeland University HospitalBergenNorway
| | - Peter Wohlfahrt
- Department of Preventive CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
- Centre for Cardiovascular PreventionCharles University Medical School I and Thomayer HospitalPragueCzech Republic
- Department of Medicine IICharles University in Prague, First Faculty of MedicinePragueCzech Republic
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
- Modeling, Simulation and Extended Reality LaboratoryIstinye UniversityIstanbulTurkey
| | - Dimitrios Terentes‐Printzios
- First Department of Cardiology, Hippokration Hospital, Athens Medical SchoolNational and Kapodistrian University of AthensGreece
| | - Jordi Alastruey
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Andrea Guala
- Vall d’Hebron Institut de Recerca (VHIR)BarcelonaSpain
- CIBER‐CV, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
5
|
Jansen LC, Schwab HM, van de Vosse FN, van Sambeek MRHM, Lopata RGP. Local and global distensibility assessment of abdominal aortic aneurysms in vivo from probe tracked 2D ultrasound images. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1052213. [PMID: 36699662 PMCID: PMC9869420 DOI: 10.3389/fmedt.2022.1052213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Rupture risk estimation of abdominal aortic aneurysm (AAA) patients is currently based on the maximum diameter of the AAA. Mechanical properties that characterize the mechanical state of the vessel may serve as a better rupture risk predictor. Non-electrocardiogram-gated (non-ECG-gated) freehand 2D ultrasound imaging is a fast approach from which a reconstructed volumetric image of the aorta can be obtained. From this 3D image, the geometry, volume, and maximum diameter can be obtained. The distortion caused by the pulsatility of the vessel during the acquisition is usually neglected, while it could provide additional quantitative parameters of the vessel wall. In this study, a framework was established to semi-automatically segment probe tracked images of healthy aortas (N = 10) and AAAs (N = 16), after which patient-specific geometries of the vessel at end diastole (ED), end systole (ES), and at the mean arterial pressure (MAP) state were automatically assessed using heart frequency detection and envelope detection. After registration AAA geometries were compared to the gold standard computed tomography (CT). Local mechanical properties, i.e., compliance, distensibility and circumferential strain, were computed from the assessed ED and ES geometries for healthy aortas and AAAs, and by using measured brachial pulse pressure values. Globally, volume, compliance, and distensibility were computed. Geometries were in good agreement with CT geometries, with a median similarity index and interquartile range of 0.91 [0.90-0.92] and mean Hausdorff distance and interquartile range of 4.7 [3.9-5.6] mm. As expected, distensibility (Healthy aortas: 80 ± 15·10-3 kPa-1; AAAs: 29 ± 9.6·10-3 kPa-1) and circumferential strain (Healthy aortas: 0.25 ± 0.03; AAAs: 0.15 ± 0.03) were larger in healthy vessels compared to AAAs. Circumferential strain values were in accordance with literature. Global healthy aorta distensibility was significantly different from AAAs, as was demonstrated with a Wilcoxon test (p-value = 2·10-5). Improved image contrast and lateral resolution could help to further improve segmentation to improve mechanical characterization. The presented work has demonstrated how besides accurate geometrical assessment freehand 2D ultrasound imaging is a promising tool for additional mechanical property characterization of AAAs.
Collapse
Affiliation(s)
- Larissa C. Jansen
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands,Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands,Correspondence: Larissa C. Jansen
| | - Hans-Martin Schwab
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Frans N. van de Vosse
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Marc R. H. M. van Sambeek
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands,Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Richard G. P. Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
6
|
Jadli AS, Ballasy NN, Gomes KP, Mackay CDA, Meechem M, Wijesuriya TM, Belke D, Thompson J, Fedak PWM, Patel VB. Attenuation of Smooth Muscle Cell Phenotypic Switching by Angiotensin 1-7 Protects against Thoracic Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms232415566. [PMID: 36555207 PMCID: PMC9779869 DOI: 10.3390/ijms232415566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) involves extracellular matrix (ECM) remodeling of the aortic wall, leading to reduced biomechanical support with risk of aortic dissection and rupture. Activation of the renin-angiotensin system, and resultant angiotensin (Ang) II synthesis, is critically involved in the onset and progression of TAA. The current study investigated the effects of angiotensin (Ang) 1-7 on a murine model of TAA. Male 8-10-week-old ApoEKO mice were infused with Ang II (1.44 mg/kg/day) and treated with Ang 1-7 (0.576 mg/kg/day). ApoEKO mice developed advanced TAA in response to four weeks of Ang II infusion. Echocardiographic and histological analyses demonstrated increased aortic dilatation, excessive structural remodelling, perivascular fibrosis, and inflammation in the thoracic aorta. Ang 1-7 infusion led to attenuation of pathological phenotypic alterations associated with Ang II-induced TAA. Smooth muscle cells (SMCs) isolated from adult murine thoracic aorta exhibited excessive mitochondrial fission, oxidative stress, and hyperproliferation in response to Ang II. Treatment with Ang 1-7 resulted in inhibition of mitochondrial fragmentation, ROS generation, and hyperproliferation. Gene expression profiling used for characterization of the contractile and synthetic phenotypes of thoracic aortic SMCs revealed preservation of the contractile phenotype with Ang 1-7 treatment. In conclusion, Ang 1-7 prevented Ang II-induced vascular remodeling and the development of TAA. Enhancing Ang 1-7 actions may provide a novel therapeutic strategy to prevent or delay the progression of TAA.
Collapse
Affiliation(s)
- Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Noura N. Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Karina P. Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Cameron D. A. Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Megan Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tishani Methsala Wijesuriya
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Darrell Belke
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jennifer Thompson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Paul W. M. Fedak
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: or ; Tel.: +1-(403)-220-3446
| |
Collapse
|
7
|
Wazzan M, Abduljabbar A, Ajlan A, Ahmad R, Alhazmi T, Eskandar A, Khashoggi K, Alasadi F, Howladar S, Alshareef Y. Reference Normal Diameters of the Abdominal Aorta and Common Iliac Arteries in the Saudi Population. Cureus 2022; 14:e30695. [PMID: 36439581 PMCID: PMC9692199 DOI: 10.7759/cureus.30695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The abdominal aorta is the largest artery in the abdomen. It then bifurcates giving the two common iliac arteries. Knowing the normal abdominal aorta diameter is a basis for diagnosing abdominal aortic aneurysms (AAAs) and subsequently developing an optimal management plan. In order to diagnose AAA, one must have a reference for the normal abdominal aortic diameter that represents the anatomical variation in the population being studied. The aim of this research is to establish normal abdominal aortic diameters in the Saudi population.
Collapse
|
8
|
Sauceda A. A contemporary review of non-invasive methods in diagnosing abdominal aortic aneurysms. J Ultrason 2021; 21:e332-e339. [PMID: 34970445 PMCID: PMC8678647 DOI: 10.15557/jou.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Currently, the impact of abdominal aortic aneurysm may be changing despite the aging population, but may be ambiguous given the decline in smoking, the use of screening methods, and integration of non-surgical treatment. Objective: This review aimed to assess the most common currently used non-invasive methods to identify abdominal aortic aneurysm, namely ultrasound and computed tomography. Methods: PRISMA guidelines were utilized to retrieve original articles from the past five years. All retrospective and prospective studies/trials were included, but limited to US and CT abdominal aortic aneurysm diagnostic imaging methods. Qualitative assessment of study quality is described. Results: Three of the six studies reported abdominal aortic aneurysm screening data. The estimated prevalence of abdominal aortic aneurysm for the three studies ranged from 4.5% to 6.2%. CT had slightly higher sensitivity and US had higher specificity for abdominal aortic aneurysm diagnosis. Two of the described studies assessed technical issues and problems with contemporary imaging of abdominal aortic aneurysm. The final article described measuring abdominal aortic aneurysm function of aortic distensibility and its pulse wave velocity for a comprehensive assessment of the abdominal aortic aneurysm via standard CT imaging. Conclusions: Both US and CT are useful diagnostic imaging modalities for abdominal aortic aneurysm, but remain with unique pitfalls and propensity for errors, notwithstanding patient-related errors. Technical issues in imaging with both ultrasound and CT are not straightforward. The potential value of an integrated CT protocol with CT-US fusion and/or assessment of aortic function rather than solely aortic anatomy may further diminish diagnostic complexities.
Collapse
Affiliation(s)
- Ana Sauceda
- Allied Health, University of Oklahoma HSC, United States
| |
Collapse
|
9
|
Lorenzen US, Eiberg JP, Hultgren R, Wanhainen A, Langenskiöld M, Sillesen HH, Bredahl KK. The Short-term Predictive Value of Vessel Wall Stiffness on Abdominal Aortic Aneurysm Growth. Ann Vasc Surg 2021; 77:187-194. [PMID: 34437978 DOI: 10.1016/j.avsg.2021.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) surveillance programs are currently based solely on AAA diameter. The diameter criterion alone, however, seems inadequate as small AAAs comprise 5-10 % of ruptured AAAs as well as some large AAAs never rupture. Aneurysm wall stiffness has been suggested to predict rupture and growth; this study aimed to investigate the prognostic value of AAA vessel wall stiffness for growth on prospectively collected data. METHODS Analysis was based on data from a randomised, placebo-controlled, multicentre trial investigating mast-cell-inhibitors to halt aneurysm growth (the AORTA trial). Systolic and diastolic AAA diameter was determined in 326 patients using electrocardiogram-gated ultrasound (US). Stiffness was calculated at baseline and after 1 year. RESULTS Maximum AAA diameter increased from 44.1 mm to 46.5 mm during the study period. Aneurysm growth after 1 year was not predicted by baseline stiffness (-0.003 mm/U; 95 % CI: -0.007 to 0.001 mm/U; P = 0.15). Throughout the study period, stiffness remained unchanged (8.3 U; 95 % CI: -2.5 to 19.1 U; P = 0.13) and without significant correlation to aneurysm growth (R: 0.053; P = 0.38). CONCLUSIONS Following a rigorous US protocol, this study could not confirm AAA vessel wall stiffness as a predictor of aneurysm growth in a 1-year follow-up design. The need for new and subtle methods to complement diameter for improved AAA risk assessment is warranted.
Collapse
Affiliation(s)
| | - Jonas P Eiberg
- Department of Vascular Surgery, Rigshospitalet, Denmark; Copenhagen Academy for Medical Education and Simulation (CAMES), Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden; Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Sweden
| | - Marcus Langenskiöld
- Department of Molecular and Clinical Medicine, University of Gothenurg, Sweden
| | - Henrik H Sillesen
- Department of Vascular Surgery, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim K Bredahl
- Department of Vascular Surgery, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Shirakawa T, Kuratani T, Yoshitatsu M, Shimamura K, Fukui S, Kurata A, Koyama Y, Toda K, Fukuda I, Sawa Y. Towards a Clinical Implementation of Measuring the Elastic Modulus of the Aorta from Cardiac Computed Tomography Images. IEEE Trans Biomed Eng 2021; 68:3543-3553. [PMID: 33945468 DOI: 10.1109/tbme.2021.3077362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The elasticity of the aortic wall varies depending on age, vessel location, and the presence of aortic diseases. Noninvasive measurement will be a powerful tool to understand the mechanical state of the aorta in a living human body. This study aimed to determine the elastic modulus of the aorta using computed tomography images. METHODS We constructed our original formulae based on mechanics of materials. Then, we performed computed tomography scans of a silicon rubber tube by applying four pressure conditions to the lumen. The segment elastic modulus was calculated from the scanned images using our formulae. The actual modulus was measured using a tensile loading test for comparison. RESULTS The segment moduli of elasticity from the images were 0.525 [0.524, 0.527], 0.524 [0.520, 0.524], 0.520 [0.515, 0.523], and 0.522 [0.516, 0.532] (unit: MPa, median [25%, 75% quantiles]) for the four pressure conditions, respectively. The corresponding measurements in the tensile test were 0.548 [0.539, 0.566], 0.535 [0.528, 0.553], 0.526 [0.513, 0.543], and 0.523 [0.508, 0.530], respectively. These results indicated errors of 4.2%, 2.1%, 1.1%, and 0.2%, respectively. CONCLUSION Our formulae provided good estimations of the segment elastic moduli of a silicon rubber tube under physiological pressure conditions using the computed tomography images. SIGNIFICANCE In addition to the elasticity, the formulae provide the strain energy as well. These properties can be better predictors of aortic diseases. The formulae consist of clinical parameters commonly used in medical settings (pressure, diameter, and wall thickness).
Collapse
|
11
|
Gunn AJ, Kalva SP, Majdalany BS, Craft J, Eldrup-Jorgensen J, Ferencik M, Ganguli S, Kendi AT, Khaja MS, Obara P, Russell RR, Sutphin PD, Vijay K, Wang DS, Dill KE. ACR Appropriateness Criteria® Nontraumatic Aortic Disease. J Am Coll Radiol 2021; 18:S106-S118. [PMID: 33958105 DOI: 10.1016/j.jacr.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023]
Abstract
Nontraumatic aortic disease can be caused by a wide variety of disorders including congenital, inflammatory, infectious, metabolic, neoplastic, and degenerative processes. Imaging examinations such as radiography, ultrasound, echocardiography, catheter-based angiography, CT, MRI, and nuclear medicine examinations are essential for diagnosis, treatment planning, and assessment of therapeutic response. Depending upon the clinical scenario, each of these modalities has strengths and weaknesses. Whenever possible, the selection of a diagnostic imaging examination should be based upon the best available evidence. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. The purpose of this document is to assist physicians select the most appropriate diagnostic imaging examination for nontraumatic aortic diseases.
Collapse
Affiliation(s)
- Andrew J Gunn
- University of Alabama at Birmingham, Birmingham, Alabama, Director, Interventional Oncology, Director, Ambulatory Clinic, Assistant Program Director, Diagnostic Radiology Residency, Assistant Program Director, Interventional Radiology Residency, University of Alabama at Birmingham, Member, American College of Radiology-Radiologic Society of North America Patient Information Committee.
| | - Sanjeeva P Kalva
- Panel Chair, Massachusetts General Hospital, Boston, Massachusetts, Chief, Division of Interventional Radiology, Massachusetts General Hospital
| | | | - Jason Craft
- St. Francis Hospital, Catholic Health Services of Long Island, Roslyn, New York, Society for Cardiovascular Magnetic Resonance
| | - Jens Eldrup-Jorgensen
- Tufts University School of Medicine, Boston, Massachusetts, Society for Vascular Surgery
| | - Maros Ferencik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, Society of Cardiovascular Computed Tomography
| | | | - A Tuba Kendi
- Mayo Clinic, Rochester, Minnesota, Director of Nuclear Medicine Therapies at Mayo Clinic Rochester
| | - Minhajuddin S Khaja
- University of Virginia, Charlottesville, Virginia, Vice-Chair ACR Vascular Imaging Panel 2, Program Director, Independent IR Residency, UVA Health
| | - Piotr Obara
- Loyola University Medical Center, Maywood, Illinois
| | - Raymond R Russell
- The Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, Nuclear cardiology expert, Program Director, Cardiology Fellowship, Director, Nuclear Cardiology, Director, Cardio-Oncology Program, Rhode Island Hospital
| | | | | | - David S Wang
- Stanford University Medical Center, Stanford, California
| | - Karin E Dill
- Specialty Chair, Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
12
|
He Z, Mongrain R, Lessard S, Chayer B, Cloutier G, Soulez G. Anthropomorphic and biomechanical mockup for abdominal aortic aneurysm. Med Eng Phys 2020; 77:60-68. [PMID: 31954613 DOI: 10.1016/j.medengphy.2019.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/08/2019] [Accepted: 12/15/2019] [Indexed: 11/16/2022]
Abstract
Abdominal aortic aneurysm (AAA) is an asymptomatic condition due to the dilation of abdominal aorta along with progressive wall degeneration, where rupture of AAA is life-threatening. Failures of AAA endovascular repair (EVAR) reflect our inadequate knowledge about the complex interaction between the aortic wall and medical devices. In this regard, we are presenting a hydrogel-based anthropomorphic mockup (AMM) to better understand the biomechanical constraints during EVAR. By adjusting the cryogenic treatments, we tailored the hydrogel to mimic the mechanical behavior of human AAA wall, thrombus and abdominal fat. A specific molding sequence and a pressurizing system were designed to reproduce the geometrical and diseased characteristics of AAA. A mechanically, anatomically and pathologically realistic AMM for AAA was developed for the first time, EVAR experiments were then performed with and without the surrounding fat. Substantial displacements of the aortic centerlines and vessel expansion were observed in the case without surrounding fat, revealing an essential framework created by the surrounding fat to account for the interactions with medical devices. In conclusion, the importance to consider surrounding tissue for the global deformation of AAA during EVAR was highlighted. Furthermore, potential use of this AMM for medical training was also suggested.
Collapse
Affiliation(s)
- Zinan He
- McGill University, 845 Sherbrooke Street West, Montréal, Québec H3A 0G4, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada
| | - Rosaire Mongrain
- McGill University, 845 Sherbrooke Street West, Montréal, Québec H3A 0G4, Canada
| | - Simon Lessard
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada
| | - Boris Chayer
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada
| | - Guy Cloutier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada; Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec H3T 1J4, Canada
| | - Gilles Soulez
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada; Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|