1
|
Rodrigues L, Canberk S, Macedo S, Soares P, Vinagre J. DGCR8 Microprocessor Subunit Mutation and Expression Deregulation in Thyroid Lesions. Int J Mol Sci 2022; 23:ijms232314812. [PMID: 36499151 PMCID: PMC9740158 DOI: 10.3390/ijms232314812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
DGCR8 emerged recently as miRNAs biogenesis pathway protein with a highlighted role in thyroid disease. This study aimed to characterize this miRNA biogenesis component, in particular the p.(E518K) mutation and DGCR8 expression in a series of thyroid lesions. The series of thyroid lesions was genotyped for the c.1552G>A p.(E518K) mutation. When frozen tissue was available, DGCR8 mRNA expression was analysed by qPCR. Formalin-fixed paraffin-embedded tissues were studied for DGCR8 immunoexpression. We present for the first time the p.(E518K) mutation in a case of poorly differentiated thyroid carcinoma and present the deregulation of DGCR8 expression at mRNA level in follicular-patterned tumours. The obtained data solidify DGCR8 as another important player of miRNA-related gene mutations in thyroid tumorigenesis, particularly in follicular-patterned thyroid tumours.
Collapse
Affiliation(s)
- Lia Rodrigues
- Escola Superior de Saúde do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Rua Alfredo Allen, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, 4200-135 Porto, Portugal
| | - Sule Canberk
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Rua Alfredo Allen, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas da Universidade do Porto (ICBAS), Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Sofia Macedo
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Rua Alfredo Allen, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas da Universidade do Porto (ICBAS), Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Rua Alfredo Allen, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Rua Alfredo Allen, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-22-557-0700
| |
Collapse
|
2
|
Tan C, Dai Y, Liu X, Zhao G, Wang W, Li J, Qi L. STAT5A induced LINC01198 promotes proliferation of glioma cells through stabilizing DGCR8. Aging (Albany NY) 2020; 12:5675-5692. [PMID: 32246817 PMCID: PMC7185146 DOI: 10.18632/aging.102938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023]
Abstract
Background: LINC01198 has been suggested to be able to predict overall prognosis for glioma; however, it has been little described in glioma. Results: It was shown that LINC01198 was markedly enriched in neoplasmic tissues relative to normal controls; and that elevated LINC01198 significantly correlated with unfavorable overall prognosis. Moreover, activation of STAT5A, identified as transcription factor (TF), can induce the expression of LINC01198. DGCR8, a kind of RNA-binding proteins (RBPs), was identified to be able to bind with LINC01198 that can stabilize the DGCR8. Five differential miRNAs with most significant difference, including miR-21-5p, miR-34-5p, miR-1246, miR-4488 and miR-494, were obtainable after silencing of DGCR8. Conclusions: Together, the data we presented here suggested that STAT5 induced LINC01198 promotes proliferation and motility of glioma cells through stabilizing DGCR8 in glioma cells. Methods: Expression of LINC01198 was appraised by quantitative PCR (qPCR) and in situ hybridization (ISH) in glioma clinical specimens, totaling 100 cases. Post hoc statistical analysis was conducted. In vitro, LINC01198 was stably silenced or re-expressed by transfection with lentiviral-based vectors. Chromatin-immunoprecipitation (CHIP) was applied to identify the relevant TFs that can bind with LINC01198, which was corroborated with electrophoretic mobility shift (EMSA) assay. RNA-immunoprecipitation (RIP) was used to identify the RNA-binding protein that can bind with LINC01198. Moreover, miRNA microarray was used to screen out differential miRNAs after silencing of DGCR8.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Yimeng Dai
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Guifang Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P.R. China.,Department of Pathophysiology, Jilin Medical University, Jilin 132013, P.R. China
| | - Weiyao Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P.R. China.,Department of Pathophysiology, Jilin Medical University, Jilin 132013, P.R. China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Ling Qi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P.R. China.,Department of Pathophysiology, Jilin Medical University, Jilin 132013, P.R. China
| |
Collapse
|
3
|
Kirave P, Gondaliya P, Kulkarni B, Rawal R, Garg R, Jain A, Kalia K. Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition. Oncotarget 2020; 11:1157-1171. [PMID: 32284792 PMCID: PMC7138164 DOI: 10.18632/oncotarget.27531] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/03/2020] [Indexed: 01/07/2023] Open
Abstract
Cisplatin is used as chemotherapeutic drug for oral squamous cell carcinoma (OSCC). However, OSCC cells develop resistance following long-term cisplatin exposure. Resistance against cisplatin chemo-therapy is accredited to the process of epithelial-to-mesenchymal transition, which in-turn has been linked to tumor-recurrence. miRNA deregulation, a common event in cancer, plays contributory role in chemo-resistance. Exosomes acts as the natural cargo for miRNA and facilitates inter-cell communication in the tumor micro-environment. Hence, exosomal-mediated miRNA transference may play essential role in drug resistance and serve as a target for cancer-therapy. miR-155 upregulation in OSCC has been described, however, its relevance in the observed chemo-resistance is unclear and also, if exosomes have any role in miR-155 regulation remain elusive. In the present study, we document for the first time the critical role of exosomes in mediating increments in miR-155 expression in OSCC cells that have acquired cisplatin resistance (cisRes cells). Importantly, exosomal transfer from cisRes to the cisplatin sensitive (cisSens) cells was found to confer significant miR-155 induction in the recipient cisSens cells. Restoration of miR-155 expression in cisSens cells following miR-155 mimics treatment led to epithelial to mesenchymal transition, enhancements in their migratory potential as well as acquisition of resistant phenotype. Notably, similar augmentations in the migratory and chemo-resistant traits were seen upon delivery of exosomes from cisRes to the recipient cisSens cells. Overall, our findings establish the significance of exosomal-mediated miR-155 shuttling in the cisplatin-chemoresistance, commonly observed in OSCC cells, thereby providing rationale for targeting miR-155 signalling for oral cancer therapy.
Collapse
Affiliation(s)
- Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
- These authors contributed equally to this work and are first authors
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
- These authors contributed equally to this work and are first authors
| | - Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
- These authors contributed equally to this work and are first authors
| | - Rakesh Rawal
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Rachana Garg
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| |
Collapse
|
4
|
Lee SS, Min H, Ha JY, Kim BH, Choi MS, Kim S. Dysregulation of the miRNA biogenesis components DICER1, DROSHA, DGCR8 and AGO2 in clear cell renal cell carcinoma in both a Korean cohort and the cancer genome atlas kidney clear cell carcinoma cohort. Oncol Lett 2019; 18:4337-4345. [PMID: 31516620 DOI: 10.3892/ol.2019.10759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Impairment of microRNA (miRNA) biogenesis may be involved in clear cell renal cell carcinoma (ccRCC). The objective of the present study was to investigate the mRNA levels of important miRNA machinery components, DICER1, DROSHA, DiGeroge syndrome critical region gene 8 (DGCR8), and Argonaute 2 (AGO2), and their correlations with clinicopathological characteristics of ccRCC using mRNA expression data from The Cancer Genome Atlas kidney clear cell carcinoma (TCGA KIRC) cohort and a Korean ccRCC cohort. mRNA levels of DICER1, DROSHA, and DGCR8 were significantly decreased in both cohorts. However, AGO2 was significantly downregulated only in the Korean ccRCC cohort. Additionally, positive correlations were observed between the altered mRNA levels of DICER1 and DROSHA as well as DROSHA and DGCR8 in both cohorts. In the TCGA KIRC cohort, alterations in the mRNA levels of DICER1 were significantly correlated with histological grade. Furthermore, the altered mRNA levels of DGCR8 showed significant associations with sex and histologic grades. However, in the Korean ccRCC cohort, no factors were significantly associated with any clinicopathological parameters, including sex, age, T stage, Fuhrman grade/The International Society of Urological Pathology grade, lymphovascular invasion, and peri-renal fat invasion. Taken together, these findings indicate that DICER1, DROSHA, DGCR8 and AGO2 are significantly dysregulated in ccRCC, suggesting that they are important in the pathophysiology of this malignancy.
Collapse
Affiliation(s)
- Sang Su Lee
- Department of Internal Medicine, Dongsan Medical Center, Keimyung University, Jung-gu, Daegu 41931, Republic of Korea
| | - Hyeonji Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ji Yong Ha
- Department of Urology, Dongsan Medical Center, Keimyung University, Jung-gu, Daegu 41931, Republic of Korea
| | - Byung Hoon Kim
- Department of Urology, Dongsan Medical Center, Keimyung University, Jung-gu, Daegu 41931, Republic of Korea
| | - Mi Sun Choi
- Department of Pathology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
5
|
Yang Y, Wang Y, Liu S, Zhao X, Jia R, Xiao Y, Zhang M, Li X, Li J, Wang W. How hsa-miR-495 performed in the tumorigenesis of pancreatic adenocarcinoma by bioinformatics analysis. J Cell Biochem 2019; 120:7802-7813. [PMID: 30485500 DOI: 10.1002/jcb.28055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Pancreatic adenocarcinoma (PAAD) is one of the most fatal cancers in the world for early metastasis, extensive invasion, and poor prognosis with a 5-year survival rate less than 5%. However, the underlying mechanisms are poorly understood. Therefore, it is urgent to explore molecular markers for early diagnosis or therapy target to improve the outcome of PAAD. METHODS We retrieved transcriptome data as well as clinical information from patients with PAAD in The Cancer Genome Altas (TCGA) database. Survival time associated microRNAs (miRNAs) and messenger RNAs (mRNAs) were initially identified, followed by enrichment analysis (Gene Ontology [GO] and pathway). The relationship between survival time associated miRNAs-mRNAs was also investigated to discover putative transcriptional control mechanisms of PAAD. Finally, by consulting the literature and retrieving the database, we found that hsa-miR-495 might have played an important role in PAAD. RESULTS In total, 146 miRNAs from 378 miRNAs and 580 mRNA from 17 100 mRNA, including 328 risk mRNA and 252 protective mRNA, were found to be associated with the survival time of PAAD. Eight hundred eighty-eight mRNA-miRNA pairs were related to the survival time of PAAD, involving in 755 mRNAs and 35 miRNAs. We chose 13 miRNAs predicted by target gene in the miRanda database for further research. Among these 13 miRNAs, hsa-miR-495 was identified as a good biomarker. Through GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the significantly enriched pathways involved in focal adhesion, Staphylococcus aureus infection, and Intestinal immune network for immunoglobulin A production. And four target genes and 87 pathways of the hsa-miR-495 were enriched in PAAD. Interestingly, we found hsa-miR-495 with a low expression having a poor overall survival and significantly different recurrence rate within 5 years. CONCLUSION Hsa-miR-495 and its target genes may serve as a prognostic and predictive marker in PAAD. Further research on the function of the hsa-miR-495 and its target genes in the KEGG pathway may provide references for treatment of PAAD.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co Ltd, Beijing, China
| | - Yanfeng Wang
- Department of Pathology, Heilongjiang Province Land Reclamation Headquarter General Hospital, Harbin, China
| | - Shizhong Liu
- Department of Economics and Management, Beijing Electronic Technology Vocational College, Beijing, China
| | - Xiaoling Zhao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co Ltd, Beijing, China
| | - Rujing Jia
- Accreditation Department Five (Proficiency Testing Department), China National Accreditation Service for Conformity Assessment (CNAS), Beijing, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pathology, Haidian Meternal & Children Health Hospital, Beijing, China
| | - Xiaoou Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pathology, Daxing Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Yang Y, Jia B, Zhao X, Wang Y, Ye W. miR-93-5p may be an important oncogene in prostate cancer by bioinformatics analysis. J Cell Biochem 2018; 120:10463-10483. [PMID: 30582208 DOI: 10.1002/jcb.28332] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Prostate adenocarcinoma is one of the most prevalent causes of cancer-related deaths in males worldwide. However, the underlying mechanisms remain poorly understood. Hence, it is important to identify specific and effective therapeutic targets, to be able to determine appropriate therapy and management. So, this study aimed to predict that miR-93-5p is an important oncogene in prostate cancer by bioinformatics analysis. METHODS In this study, initially we identified differentially expressed genes (DEGs) and differently expressed miRNAs (DEMs) in the The Cancer Genome Atlas (TCGA) database, performed Gene Ontology (GO) and pathway enrichment analysis, then investigated the relationship between DEGs and DEMs, and finally through consulting the literature and retrieving the database, we found that miR-93-5p may play a major role in prostate cancer, so we predicted the expression and survival of miR-93-5p and its isomers by bioinformatics analysis, meanwhile, evaluated the function of miR-93-5p in vitro. RESULTS In total, 104 DEMs were differently expressed between prostate cancer and normal samples, including 56 downregulated ones and 48 upregulated ones; miR-93-5p (upregulated) was identified as a good biomarker. And 1904 DEGs were retrieved, including 794 downregulated ones and 1110 upregulated ones. We also obtained 1254 DEGs of the DEMs. In GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the significantly enriched pathways involved pathway in focal adhesion, vascular smooth muscle contraction, and regulation of actin cytoskeleton. By the KEGG pathway, we got 16 target genes and 92 pathways of the miR-93-5p in prostate cancer. We also found that the miR-93-5p and its isomers can express in prostate cancer, and which with a high expression had a poor overall survival and a significant difference recurrence rate within 5 years. Further in vitro verification results demonstrated that the low expression of miR-93-5p can inhibit cell proliferation, migration, invasion, change cell cycle, and promote early apoptosis of PC-3 cells. CONCLUSION The miR-93-5p and its target genes were used to define important molecular targets that could serve as a prognostic and predictive marker in the treatment of prostate cancer. Further research on the function of the miR-93-5p and its target genes in the KEGG pathway could provide references for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Binghan Jia
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Xiaoling Zhao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Yao Wang
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Weiliang Ye
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| |
Collapse
|
7
|
Huang M, Yan C, Wei H, Lv Y, Ling R. Clinicopathological characteristics and prognosis of thyroid cancer in northwest China: A population-based retrospective study of 2490 patients. Thorac Cancer 2018; 9:1453-1460. [PMID: 30209893 PMCID: PMC6209792 DOI: 10.1111/1759-7714.12858] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background The specific clinical features of thyroid cancer patients in northwest China are unclear; therefore, we analyzed the clinicopathological characteristics and prognosis of this population. Methods Clinical characteristics including age, gender, blood type, histological type, and BRAFV600E gene mutation; and incidence; risk factors; surgical treatment; and prognosis were recorded. Results A total of 2490 thyroid cancer patients were included; 98% were diagnosed with papillary thyroid cancer (PTC). Weight, blood type, histological type, and BRAFV600E gene mutation rates were significantly different. Pediatric thyroid cancer patients had higher lymph node metastasis, lower BRAFV600E mutation, and 6.2–9.2% greater recurrence rates than adult patients. PTC and papillary thyroid microcarcinoma displayed similar features, while in other types, such as follicular and medullary thyroid cancer, there were variations. Multiple logistic analyses showed that age (odds ratio [OR] 0.957, 95% confidence interval [CI] 0.944–0.970; P < 0.001), focal status (OR 16.174, 95% CI 9.257–28.262; P < 0.001), pathology (OR 0.642, 95% CI 0.473–0.871; P = 0.004) and lymph node metastasis (OR 0.059, 95% CI 0.033–0.107; P < 0.001) were independent factors for BRAFV600E mutation. Conclusion Most real world clinicopathological features, treatment, and prognosis of thyroid cancer are similar to reported data, such as the higher incidence of disease in women and the larger proportion of PTC. However, the results in pediatric patients and those with BRAF gene mutations are controversial and require more clinical incidence.
Collapse
Affiliation(s)
- Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Changjiao Yan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Hongliang Wei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Yonggang Lv
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|
8
|
Yuan KT, Li BX, Yuan YJ, Tan M, Tan JF, Dai WG, Feng WD, Zuo JD. Deregulation of MicroRNA-375 Inhibits Proliferation and Migration in Gastric Cancer in Association With Autophagy-Mediated AKT/mTOR Signaling Pathways. Technol Cancer Res Treat 2018; 17:1533033818806499. [PMID: 30355273 PMCID: PMC6202745 DOI: 10.1177/1533033818806499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer is a deadly disease. Some microRNAs are involved in tumor invasion and metastasis. Underexpression of miR-375 has been correlated with tumorigenesis, treatment resistance, and poor prognosis. In this study, we first analyzed the profiles and prognostic values of miR-375 expression in gastric cancer tissues from a public database, and the expression level of miR-375 in gastric cancer samples and gastric cancer cell lines was then analyzed by quantitative real- time polymerase chain reaction. Significant underexpression of miR-375 was seen in all the gastric cancer samples compared to paired paracarcinoma tissues, and the expression level of miR-375 in the gastric cancer cell lines was negatively associated with the cell migration ability. A Cell proliferation (CCK-8) assay was performed to examine cell viability. Overexpression of miR-375 suppressed the proliferation of gastric cancer cells. A Western blot analysis was carried out to test protein expression. Overexpression of miR-375 inhibited autophagy through the AKT/ mammalian target of rapamycin signaling pathway. MiR-375 regulated invasion and migration via AKT/ mammalian target of rapamycin pathway-mediated epithelial-to-mesenchymal transition. Wound healing and migration assays were used to determine the motility of gastric cancer cells. A gastric cancer xenograft nude mouse model was used for an in vivo efficacy evaluation. Overexpression of miR-375 significantly suppressed cell proliferation in the established gastric cancer xenograft nude mouse model. Our results demonstrate that increasing the expression level of miR-375 suppresses proliferation in vitro and in vivo, and they provide a mechanistic and applicable rationale for the future clinical evaluation of miR-375 in gastric cancer treatment. Our findings provide not only new information about the molecular mechanism of microRNAs in regulating invasion and migration in gastric cancer but also a theoretical principle for a potential targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Kai-Tao Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bao-Xia Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Jie Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin-Fu Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Gang Dai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Dong Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ji-Dong Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|