1
|
Moretti C, Bonomi M, Dionese P, Federici S, Fulghesu AM, Giannelli J, Giordano R, Guccione L, Maseroli E, Moghetti P, Mioni R, Pivonello R, Sabbadin C, Scaroni C, Tonacchera M, Verde N, Vignozzi L, Gambineri A. Inositols and female reproduction disorders: a consensus statement from the working group of the Club of the Italian Society of Endocrinology (SIE)-Women's Endocrinology. J Endocrinol Invest 2024; 47:2111-2141. [PMID: 39009925 DOI: 10.1007/s40618-024-02363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE To provide the latest scientific knowledge on the efficacy of inositols for improving reproductive disorders in women with and without polycystic ovary syndrome (PCOS) and to reach a consensus on their potential use through a Delphi-like process. METHODS A panel of 17 endocrinologists and 1 gynecologist discussed 4 key domains: menses irregularity and anovulation, fertility, pregnancy outcomes, and neonatal outcomes. RESULTS A total of eight consensus statements were drafted. Myo-inositol (Myo) supplementation can be used to improve menses irregularities and anovulation in PCOS. Myo supplementation can be used in subfertile women with or without PCOS to reduce the dose of r-FSH for ovarian stimulation during IVF, but it should not be used to increase the clinical pregnancy rate or live birth rate. Myo supplementation can be used in the primary prevention of gestational diabetes mellitus (GDM), but should not be used to improve pregnancy outcomes in women with GDM. Myo can be preconceptionally added to folic acid in women with a previous neural tube defects (NTD)-complicated pregnancy to reduce the risk of NTDs in newborns. Myo can be used during pregnancy to reduce the risk of macrosomia and neonatal hypoglycemia in mothers at risk of GDM. CONCLUSION This consensus statement provides recommendations aimed at guiding healthcare practitioners in the use of inositols for the treatment or prevention of female reproductive disorders. More evidence-based data are needed to definitively establish the usefulness of Myo, the appropriate dosage, and to support the use of D-chiro-inositol (DCI) or a definitive Myo/DCI ratio.
Collapse
Affiliation(s)
- Costanzo Moretti
- Department of Systems' Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Instituto Auxologico Italiano, Milan, Italy
| | - Paola Dionese
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Silvia Federici
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Instituto Auxologico Italiano, Milan, Italy
| | - Anna Maria Fulghesu
- Department of Surgical Science, Duilio Casula Hospital, University of Cagliari, Monserrato, Cagliari, Italy
| | - Jacopo Giannelli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberta Giordano
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy
| | - Laura Guccione
- Department of Systems' Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisa Maseroli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental and Clinical Biomedical Sciences, Mario Serio Careggi University Hospital, Florence, Italy
| | - Paolo Moghetti
- Unit of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Roberto Mioni
- Department of Medicine, Clinica Medica 3-Azienda Ospedaliera, University of Padua, Padua, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgica, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Chiara Sabbadin
- Endocrinology Unit, Department of Medicine (DIMED), University Hospital of Padua, Padua, Italy
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine (DIMED), University Hospital of Padua, Padua, Italy
| | - Massimo Tonacchera
- Department of Endocrinology, Pisa University Hospital of Cisanello, Azienda Ospedaliera Universitaria, Pisa, Italy
| | - Nunzia Verde
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Unità di Andrologia e Medicina della Riproduzione, Sessualità e Affermazione di Genere, Università Federico II di Napoli, Naples, Italy
| | - Linda Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental and Clinical Biomedical Sciences, Mario Serio Careggi University Hospital, Florence, Italy
| | - Alessandra Gambineri
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Beresniak A, Russo M, Forte G, Laganà AS, Oliva MM, Aragona C, Chiantera V, Unfer V. A Markov-model simulation of IVF programs for PCOS patients indicates that coupling myo-Inositol with rFSH is cost-effective for the Italian Health System. Sci Rep 2023; 13:17789. [PMID: 37853019 PMCID: PMC10584971 DOI: 10.1038/s41598-023-44055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Accumulating evidence suggests that oral supplementation with myo-Inositol (myo-Ins) is able to reduce the amount of gonadotropins and days of controlled ovarian hyperstimulation (COS) necessary to achieve adequate oocyte maturation in assisted reproduction technology (ART) protocols, particularly in women affected by polycystic ovary syndrome (PCOS). We used computational calculations based on simulation modellings. We simulated in vitro fertilization (IVF) procedures-with or without intracytoplasmic sperm injection (ICSI)-with 100,000 virtual patients, accounting for all the stages of the entire IVF procedure. A Monte Carlo technique was used to account for data uncertainty and to generate the outcome distribution at each stage. We considered virtual patients with PCOS undergoing IVF cycles to achieve pregnancy. Computational data were retrieved from clinical experience and published data. We investigated three parameters related to ART protocols: cost of single procedure; efficacy to achieve ongoing pregnancy at 12 gestational weeks; overall cost per single pregnancy. The administration of oral myo-Ins during COH protocols, compared to the standard COH with recombinant Follicle Stimulating Hormone (rFSH) only, may be considered a potential strategy to reduce costs of ART for the Italian Health System.
Collapse
Affiliation(s)
| | | | | | - Antonio Simone Laganà
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161, Rome, Italy
- Unit of Obstetrics and Gynecology, "Paolo Giaccone" Hospital, 90127, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127, Palermo, Italy
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161, Rome, Italy
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, 00193, Rome, Italy
| | - Cesare Aragona
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161, Rome, Italy
- Systems Biology Group, Rome, Italy
| | - Vito Chiantera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127, Palermo, Italy
- Unit of Gynecologic Oncology, National Cancer Institute-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161, Rome, Italy.
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy.
| |
Collapse
|
3
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
BMP/Smad Pathway Is Involved in Lithium Carbonate-Induced Neural-Tube Defects in Mice and Neural Stem Cells. Int J Mol Sci 2022; 23:ijms232314831. [PMID: 36499158 PMCID: PMC9735442 DOI: 10.3390/ijms232314831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Neural-tube defects (NTDs) are one type of the most serious birth defects. Studies have shown that inositol deficiency is closely related to the occurrence of NTDs. Bone morphogenetic protein (BMP)-mediated Smad signaling pathways have been implicated in neurogenesis and neural-tube closure. However, the role of the BMP/Smad pathway in inositol-deficiency-induced NTDs remains unclear. Inositol-deficiency models in C57 mice and mouse neural stem cells (mNSCs) were induced with Li2CO3 treatment or inositol withdrawal. The role of the BMP/Smad pathway in the regulation of cell proliferation and the development of NTDs was determined utilizing qRT-PCR, HE staining, Western blot, immunostaining, MTT assay, EdU staining, and flow cytometry. The intraperitoneal injection of Li2CO3 at Embryonic Day 7.5 induced the occurrence of NTDs. The mRNA levels of Bmp2, Bmp4, Smad1, Smad5, Smad8 and Runx2, the phosphorylation of Smad1/5/8, and the nuclear translocation of Runx2 were significantly increased in NTD embryonic brain tissues and mNSCs exposed to Li2CO3 or an inositol-free medium, which were suppressed by BMP receptor selective inhibitor LDN-193189. The Li2CO3-induced phosphorylation of Smad1/5/8 was inhibited by inositol supplementation. Cell proliferation was significantly promoted by Li2CO3 exposure or the absence of inositol in mNSCs, which was reversed by LDN-193189. These results suggest that the activation of the BMP/Smad signaling pathway might play an important role in the development of NTDs induced by maternal Li2CO3 exposure via inositol deficiency.
Collapse
|
5
|
Melatonin and Myo-Inositol: Supporting Reproduction from the Oocyte to Birth. Int J Mol Sci 2021; 22:ijms22168433. [PMID: 34445135 PMCID: PMC8395120 DOI: 10.3390/ijms22168433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
Human pregnancy is a sequence of events finely tuned by several molecular interactions that come with a new birth. The precise interlocking of these events affecting the reproductive system guarantees safe embryo formation and fetal development. In this scenario, melatonin and myo-inositol seem to be pivotal not only in the physiology of the reproduction process, but also in the promotion of positive gestational outcomes. Evidence demonstrates that melatonin, beyond the role of circadian rhythm management, is a key controller of human reproductive functions. Similarly, as the most representative member of the inositol’s family, myo-inositol is essential in ensuring correct advancing of reproductive cellular events. The molecular crosstalk mediated by these two species is directly regulated by their availability in the human body. To date, biological implications of unbalanced amounts of melatonin and myo-inositol in each pregnancy step are growing the idea that these molecules actively contribute to reduce negative outcomes and improve the fertilization rate. Clinical data suggest that melatonin and myo-inositol may constitute an optimal dietary supplementation to sustain safe human gestation and a new potential way to prevent pregnancy-associated pathologies.
Collapse
|
6
|
Facchinetti F, Cavalli P, Copp AJ, D’Anna R, Kandaraki E, Greene NDE, Unfer V. An update on the use of inositols in preventing gestational diabetes mellitus (GDM) and neural tube defects (NTDs). Expert Opin Drug Metab Toxicol 2020; 16:1187-1198. [PMID: 32966143 PMCID: PMC7614183 DOI: 10.1080/17425255.2020.1828344] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Obstetric history and maternal body composition and lifestyle may be associated with serious complications both for the mother, such as gestational diabetes mellitus (GDM), and for the fetus, including congenital malformations such as neural tube defects (NTDs). AREAS COVERED In view of the recent knowledge, changes in nutritional and physical activity habits ameliorate glycemic control during pregnancy and in turn improve maternal and neonatal health outcomes. Recently, a series of small clinical and experimental studies indicated that supplemenation with inositols, a family of insulin sensitizers, was associated with beneficial impact for both GDM and NTDs. EXPERT OPINION Herein, we discuss the most significant scientific evidence supporting myo-inositol administration as a prophylaxis for the above-mentioned conditions.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Unit of Obstetrics and Gynecology, Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Andrew J. Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Rosario D’Anna
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Eleni Kandaraki
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Nicholas D. E. Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
7
|
D'Souza SW, Copp AJ, Greene NDE, Glazier JD. Maternal Inositol Status and Neural Tube Defects: A Role for the Human Yolk Sac in Embryonic Inositol Delivery? Adv Nutr 2020; 12:212-222. [PMID: 32892218 PMCID: PMC7849949 DOI: 10.1093/advances/nmaa100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Supplementation with myo-inositol during the periconceptional period of pregnancy may ameliorate the recurrence risk of having a fetus affected by a neural tube defect (NTD; e.g., spina bifida). This could be of particular importance in providing a means for preventing NTDs that are unresponsive to folic acid. This review highlights the characteristics of inositol and describes the role of myo-inositol in the prevention of NTDs in rodent studies and the evidence for its efficacy in reducing NTD risk in human pregnancy. The possible reduction in NTD risk by maternal myo-inositol implies functional and developmentally important maternal-embryonic inositol interrelationships and also suggests that embryonic uptake of myo-inositol is crucial for embryonic development. The establishment of active myo-inositol cellular uptake mechanisms in the embryonic stages of human pregnancy, when the neural tube is closing, is likely to be an important determinant of normal development. We draw attention to the generation of materno-fetal inositol concentration gradients and relationships, and outline a transport pathway by which myo-inositol may be delivered to the early developing human embryo. These considerations provide novel insights into the mechanisms that may underpin inositol's ability to confer embryonic developmental benefit.
Collapse
Affiliation(s)
- Stephen W D'Souza
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
8
|
Garzon S, Cacciato PM, Certelli C, Salvaggio C, Magliarditi M, Rizzo G. Iron Deficiency Anemia in Pregnancy: Novel Approaches for an Old Problem. Oman Med J 2020; 35:e166. [PMID: 32953141 PMCID: PMC7477519 DOI: 10.5001/omj.2020.108] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Iron needs increase exponentially during pregnancy to meet the increased demands of the fetoplacental unit, to expand maternal erythrocyte mass, and to compensate for iron loss at delivery. In more than 80% of countries in the world, the prevalence of anemia in pregnancy is > 20% and could be considered a major public health problem. The global prevalence of anemia in pregnancy is estimated to be approximately 41.8%. Undiagnosed and untreated iron deficiency anemia (IDA) can have a great impact on maternal and fetal health. Indeed, chronic iron deficiency can affect the general wellbeing of the mother and leads to fatigue and reduced working capacity. Given the significant adverse impact on maternal-fetal outcomes, early recognition and treatment of this clinical condition is fundamental. Therefore, the laboratory assays are recommended from the first trimester to evaluate the iron status. Oral iron supplementation is the first line of treatment in cases of mild anemia. However, considering the numerous gastrointestinal side effects that often lead to poor compliance, other therapeutic strategies should be evaluated. This review aims to provide an overview of the current evidence about the management of IDA in pregnancy and available treatment options.
Collapse
Affiliation(s)
- Simone Garzon
- Department of Obstetrics and Gynecology, University of Insubria, Filippo Del Ponte Hospital, Varese, Italy
| | | | - Camilla Certelli
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Calogero Salvaggio
- Azienda Sanitaria Provinciale 2 Caltanissetta, Sant'Elia Hospital, Caltanissetta, Italy
| | - Maria Magliarditi
- Department of Obstetrics and Gynecology, Policlinico Universitario Gazzi, University of Messina, Messina, Italy
| | | |
Collapse
|
9
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
10
|
Ovayolu A, Ovayolu G, Yuce T, Ozek MA, Dogan I, Bostancieri N. Amniotic fluid concentrations of soluble endoglin and endothelial cell-specific molecule-1 in pregnancies complicated with neural tube defects. J Perinat Med 2020; 48:132-138. [PMID: 31927524 DOI: 10.1515/jpm-2019-0303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/01/2019] [Indexed: 12/28/2022]
Abstract
Objective To determine the concentrations of soluble endoglin (sCD105) and endothelial cell-specific molecule-1 (ESM-1) in the amniotic fluid (AF) of pregnant women, and to investigate the relationship between these concentrations and neural tube defects (NTDs). Methods AF concentrations of sCD105 and ESM-1 were measured in the study group, which included 60 pregnant women complicated with NTDs, and 64 pregnant women with unaffected healthy fetuses (control group). The AF concentrations of sCD105 and ESM-1 in both groups were measured using enzyme-linked immunosorbent assay and compared. Results There were no significant differences in terms of the mean AF concentrations of sCD105 and ESM-1 between the groups (P=0.141, P=0.084, respectively). There was a significant difference between the AF sCD105 concentrations in those with gestational age <24 weeks (n=101) and ≥24 weeks (n=23) (X̅<24=76.35±126.62 vs. X≥24=39.87±58.32, P=0.041). AF ESM-1 concentrations were found to be statistically significant in the gestational age <22 weeks (n=90) and ≥22 weeks (n=34) groups (X̅<22=135.91±19.26 vs. X̅≥22=148.56±46.85, P=0.035). A positive and low-level relation at a statistically significant level was determined between the gestational age and AF ESM-1 concentration in the study group (r=0.257; P=0.048). Conclusion AF concentrations of sCD105 and ESM-1 were not associated with the development of NTDs. Unlike studies that reported that ESM-1 concentrations decreased in maternal plasma with increased gestational age, we determined an increase that was proportionate to gestational age in AF.
Collapse
Affiliation(s)
- Ali Ovayolu
- Cengiz Gokcek Public Hospital, Department of Obstetrics and Gynecology, Osmangazi Mahallesi, Cengiz Gokcek Kadin Hastaliklari ve Dogum Hastanesi, 27010 Gaziantep, Turkey, GSM: +90 (532) 640 40 60, Tel.: +90 342 360 08 88, Fax: +90 342 360 02 90
| | | | - Tuncay Yuce
- Cengiz Gokcek Public Hospital, Department of Obstetrics and Gynecology, Gaziantep, Turkey
| | - Murat Aykut Ozek
- Cengiz Gokcek Public Hospital, Department of Obstetrics and Gynecology, Gaziantep, Turkey
| | - Ilkay Dogan
- Department of Biostatistics, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Nuray Bostancieri
- Department of Histology and Embryology, Gaziantep University School of Medicine, Gaziantep, Turkey
| |
Collapse
|
11
|
Wang X, Yue H, Li S, Guo J, Guan Z, Qin J, Zhu Z, Niu B, Cui M, Wang J. The Effects of Inositol Metabolism in Pregnant Women on Offspring in the North and South of China. Med Sci Monit 2020; 26:e921088. [PMID: 32063600 PMCID: PMC7041423 DOI: 10.12659/msm.921088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Inositol is an essential nutrient for cell growth, survival and embryonic development. Myo-inositol is the predominant form in natural. To investigate the correlation between inositol metabolism and embryonic development, we assessed the metabolic characteristics of myo-inositol, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) of pregnant women in the North China (Yangquan and Weihai) and South China (Nanchang and Haikou) China. Material/Methods All data were collected by face-to-face interview during pregnant women health visits using a questionnaire. Plasma levels of myo-inositol, PI(4,5)P2 and PI(3,4,5)P3 from 89 randomly collected pregnant women were detected by gas chromatography-mass spectrometry and enzyme linked immunosorbent assay. Results A total of 400 pregnant women were included in this survey. The plasma levels of myo-inositol and PI(4,5)P2 in the North China group of pregnant women were significantly higher than that in the South China group (P<0.01). The birth weight of fetuses in the North China group was heavier than that in the South China group (P<0.01). The birth length of fetuses in Yangquan was the longest among the 4 cities (P<0.01). The incidence rate of birth defects was 3.05% in the North China group, and 0.0% in the South China group. In bivariate linear correlation analysis, the body weight correlated with myo-inositol (r=0.5044, P<0.0001), PI(4,5)P2 (r=0.5950, P<0.0001) and PI(3,4,5)P3 (r=0.4710, P<0.0001), the body length was correlated with PI(4,5)P2 (r=0.3114, P=0.0035) and PI(3,4,5)P3 (r=0.2638, P<0.0130). Conclusions The plasma levels of myo-inositol and PI(4,5)P2 in pregnant women had significant difference between the North and the South of China, which might be correlated with fetal development and birth defects.
Collapse
Affiliation(s)
- Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Huixuan Yue
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland)
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland)
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jiaxing Qin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland)
| | - Mingming Cui
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland)
| |
Collapse
|
12
|
Longo M, Alrais M, Tamayo EH, Ferrari F, Facchinetti F, Refuerzo JS, Blackwell SC, Sibai BM. Vascular and metabolic profiles in offspring born to pregnant mice with metabolic syndrome treated with inositols. Am J Obstet Gynecol 2019; 220:279.e1-279.e9. [PMID: 30521799 DOI: 10.1016/j.ajog.2018.11.1101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 11/11/2018] [Accepted: 11/24/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Inositols (INOs) supplementation during pregnancy, specifically the combination of myo-inositol (MI) and D-chiro-inositol (DCI), has been reported to improve vascular parameters in women with gestational diabetes mellitus. We demonstrated previously that offspring born to pregnant mice lacking the endothelial nitric oxide synthase (eNOS+/-) gene have hypertension (HTN) as adults and, when fed a high-fat diet (HFD), develop a metabolic syndrome (MS) phenotype. OBJECTIVE Our aim was to evaluate whether INOs treatment in pregnancy complicated by MS improves the vascular and metabolic profile in mice offspring programmed in utero to develop HTN and MS. MATERIALS AND METHODS Heterozygous eNOS+/- mice fed an HFD manifest a MS phenotype. Female eNOS+/- mice with MS were bred with a wild-type (WT) male. On gestational day 1, pregnant females were randomly allocated to receive either a mixture of INOs (MI/DCI: 7.2/0.18 mg/mL) or water as placebo until delivery. The female offspring obtained were genotyped and categorized as: WT (genetically normal, with eNOS gene) and eNOS+/- offspring (genetically modified, heterozygous for eNOS gene). Both offspring developed in an abnormal uterine environment due to maternal MS. At 9-10 weeks of age, the offspring underwent a glucose tolerance test (GTT) and systolic blood pressure (SBP) measurement. The mice were then sacrificed, and the carotid arteries were isolated for evaluation of vascular responses. Responses to phenylephrine (PE), in the presence and absence of a nonspecific nitric oxide inhibitor (N-nitro-L-arginine methyl ester [L-NAME]), the vasodilator acetylcholine (ACh), and sodium nitroprusside (SNP) were assessed. RESULTS The GTT showed lower glucose levels in both eNOS+/-INOs (P = .03) and WT-INOs (P = .05) offspring born to MS dams on INOs supplementation compared to offspring born to untreated dams. SBP was higher in eNOS+/- offspring compared to WT (169 ± 7 vs 142 ± 9 mm Hg, respectively, P = .04) and INOs treatment decreased SBP in WT-INOs (110 ± 10 mm Hg, P = .01) but not in eNOS+/-INOs offspring. Maximal (%Max) contractile response to PE was higher in eNOS+/- offspring born to MS dams and was decreased in those born to MS dams treated with INOs (%Max, eNOS+/-, 123 ± 7 vs eNOS+/-INOs, 82 ± 11 mm Hg, P = .007). No differences were seen in PE contractile responses in WT offspring born to MS dams treated or not treated with INOs (WT, 92 ± 4 vs WT-INOs, 75 ± 7). The L-NAME response was decreased in eNOS+/-INOs and WT-INOs offspring compared to untreated ones. The ACh vasorelaxation was impaired in eNOS+/- and WT offspring born to MS dams, and maternal INOs treatment improved offspring vascular relaxation in both offspring (P = .01 and P = .03, respectively). No differences were seen in response to SNP. CONCLUSION Inositols supplementation improved glucose tolerance, SBP, and vascular responses in adult eNOS+/- and WT offspring born to dams with MS. Interestingly, WT born to MS dams show an altered vascular profile similar to eNOS+/- offspring and exhibit an improved response to INOs treatment. Our findings suggest that the benefits of INOs treatment are more pronounced in offspring exposed to environmental factors in utero, and less likely in those due to genetic factors.
Collapse
|
13
|
Cavalli P, Ronda E. Corrigendum to "Myoinositol: The Bridge (PONTI) to Reach a Healthy Pregnancy". Int J Endocrinol 2018; 2018:6050369. [PMID: 30275827 PMCID: PMC6157107 DOI: 10.1155/2018/6050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
[This corrects the article DOI: 10.1155/2017/5846286.].
Collapse
Affiliation(s)
- Pietro Cavalli
- Clinical Genetics, ASST Cremona, Via Concordia 1, 26100 Cremona, Italy
| | - Elena Ronda
- Clinical Genetics, ASST Cremona, Via Concordia 1, 26100 Cremona, Italy
| |
Collapse
|