1
|
Plasma Sphingosine-1-Phosphate Levels Are Associated with Progression of Estrogen Receptor-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413367. [PMID: 34948163 PMCID: PMC8703495 DOI: 10.3390/ijms222413367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Although numerous experiments revealed an essential role of a lipid mediator, sphingosine-1-phosphate (S1P), in breast cancer (BC) progression, the clinical significance of S1P remains unclear due to the difficulty of measuring lipids in patients. The aim of this study was to determine the plasma concentration of S1P in estrogen receptor (ER)-positive BC patients, as well as to investigate its clinical significance. We further explored the possibility of a treatment strategy targeting S1P in ER-positive BC patients by examining the effect of FTY720, a functional antagonist of S1P receptors, on hormone therapy-resistant cells. Plasma S1P levels were significantly higher in patients negative for progesterone receptor (PgR) expression than in those positive for expression (p = 0.003). Plasma S1P levels were also significantly higher in patients with larger tumor size (p = 0.012), lymph node metastasis (p = 0.014), and advanced cancer stage (p = 0.003), suggesting that higher levels of plasma S1P are associated with cancer progression. FTY720 suppressed the viability of not only wildtype MCF-7 cells, but also hormone therapy-resistant MCF-7 cells. Targeting S1P signaling in ER-positive BC appears to be a possible new treatment strategy, even for hormone therapy-resistant patients.
Collapse
|
2
|
Cortini M, Armirotti A, Columbaro M, Longo DL, Di Pompo G, Cannas E, Maresca A, Errani C, Longhi A, Righi A, Carelli V, Baldini N, Avnet S. Exploring Metabolic Adaptations to the Acidic Microenvironment of Osteosarcoma Cells Unveils Sphingosine 1-Phosphate as a Valuable Therapeutic Target. Cancers (Basel) 2021; 13:cancers13020311. [PMID: 33467731 PMCID: PMC7830496 DOI: 10.3390/cancers13020311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary By studying the role of tumor acidosis in osteosarcoma, we have identified a novel lipid signaling pathway that is selectively activated in acid-induced highly metastatic cell subpopulation. Furthermore, when combined to low-serine/glycine diet, the targeting of this acid-induced lipid pathway by the FDA-approved drug FTY720 significantly impaired tumor growth. This new knowledge will provide a giant leap in the understanding of the molecular mechanisms responsible for sarcoma relapses and metastasis. Finally, we paved the way to the recognition of a novel biomarker, as our data provided evidence of significantly high circulating levels in the serum of osteosarcoma patients of S1P, a lipid member of the identified acid-driven metabolic pathway. Abstract Acidity is a key player in cancer progression, modelling a microenvironment that prevents immune surveillance and enhances invasiveness, survival, and drug resistance. Here, we demonstrated in spheroids from osteosarcoma cell lines that the exposure to acidosis remarkably caused intracellular lipid droplets accumulation. Lipid accumulation was also detected in sarcoma tissues in close proximity to tumor area that express the acid-related biomarker LAMP2. Acid-induced lipid droplets-accumulation was not functional to a higher energetic request, but rather to cell survival. As a mechanism, we found increased levels of sphingomyelin and secretion of the sphingosine 1-phosphate, and the activation of the associated sphingolipid pathway and the non-canonical NF-ĸB pathway, respectively. Moreover, decreasing sphingosine 1-phosphate levels (S1P) by FTY720 (Fingolimod) impaired acid-induced tumor survival and migration. As a confirmation of the role of S1P in osteosarcoma, we found S1P high circulating levels (30.8 ± 2.5 nmol/mL, n = 17) in the serum of patients. Finally, when we treated osteosarcoma xenografts with FTY720 combined with low-serine/glycine diet, both lipid accumulation (as measured by magnetic resonance imaging) and tumor growth were greatly inhibited. For the first time, this study profiles the lipidomic rearrangement of sarcomas under acidic conditions, suggesting the use of anti-S1P strategies in combination with standard chemotherapy.
Collapse
Affiliation(s)
- Margherita Cortini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.A.); (E.C.)
| | - Marta Columbaro
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging, National Research Council of Italy, 10135 Torino, Italy;
| | - Gemma Di Pompo
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Elena Cannas
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.A.); (E.C.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
| | - Alessandra Maresca
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Costantino Errani
- Oncologic Orthopaedic Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Longhi
- Chemotherapy Unit for Musculoskeletal Tumors, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alberto Righi
- Anatomy and Pathological Histology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Nicola Baldini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
- Correspondence:
| | - Sofia Avnet
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
| |
Collapse
|
3
|
Mitrofanova A, Drexler Y, Merscher S, Fornoni A. Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS. JOURNAL OF CELLULAR SIGNALING 2020; 1:56-69. [PMID: 32914148 PMCID: PMC7480905 DOI: 10.33696/signaling.1.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids are well-recognized as major players in the pathogenesis of many human diseases, including chronic kidney disease. The kidney is a very sensitive organ to alterations in sphingolipid metabolism. The critical issues to be addressed in this review relate to the role of sphingolipids and enzymes involved in sphingolipid metabolism in the pathogenesis of glomerular diseases with a special focus on podocytes, a key cellular component of the glomerular filtration barrier. Among several sphingolipids, we will highlight the role of ceramide, sphingosine, sphingosine-1-phosphate and ceramide-1-phosphate. Additionally, we will summarize the current knowledge with regard to the use of sphingolipids as therapeutic agents for the treatment of podocyte injury in kidney disease.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
McDonald KA, Kawaguchi T, Qi Q, Peng X, Asaoka M, Young J, Opyrchal M, Yan L, Patnaik S, Otsuji E, Takabe K. Tumor Heterogeneity Correlates with Less Immune Response and Worse Survival in Breast Cancer Patients. Ann Surg Oncol 2019; 26:2191-2199. [PMID: 30963401 DOI: 10.1245/s10434-019-07338-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Intratumor heterogeneity implies that subpopulations of cancer cells that differ in genetic, phenotypic, or behavioral characteristics coexist in a single tumor (Ma in Breast Cancer Res Treat 162(1):39-48, 2017; Martelotto in Breast Cancer Res 16(3):210, 2014). Tumor heterogeneity drives progression, metastasis and treatment resistance, but its relationship with tumor infiltrating immune cells is a matter of debate, where some argue that tumors with high heterogeneity may generate neoantigens that attract immune cells, and others claim that immune cells provide selection pressure that shapes tumor heterogeneity (McGranahan et al. in Science 351(6280):1463-1469, 2016; McGranahan and Swanton in Cell 168(4):613-628, 2017). We sought to study the association between tumor heterogeneity and immune cells in a real-world cohort utilizing The Cancer Genome Atlas. METHODS Mutant allele tumor heterogeneity (MATH) was calculated to estimate intratumoral heterogeneity, and immune cell compositions were estimated using CIBERSORT. Survival analyses were demonstrated using Kaplan-Meir curves. RESULTS Tumors with high heterogeneity (high MATH) were associated with worse overall survival (p = 0.049), as well as estrogen receptor-positive (p = 0.011) and non-triple-negative tumors (p = 0.01). High MATH tumors were also associated with less infiltration of anti-tumor CD8 (p < 0.013) and CD4 T cells (p < 0.00024), more tumor-promoting regulatory T cells (p < 4e-04), lower expression of T-cell exhaustion markers, specifically PDL-1 (p = 0.0031), IDO2 (p = 0.34), ADORA2A (p = 0.018), VISTA (p = 0.00013), and CCR4 (p < 0.00001), lower expression of cytolytic enzymes granzyme A (p = 0.0056) and perforin 1 (p = 0.053), and low cytolytic activity score (p = 0.0028). CONCLUSIONS High heterogeneity tumors are associated with less immune cell infiltration, less activation of the immune response, and worse survival in breast cancer. Our results support the notion that tumor heterogeneity is shaped by selection pressure of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Kerry-Ann McDonald
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tsutomu Kawaguchi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xuan Peng
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mariko Asaoka
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jessica Young
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mateusz Opyrchal
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Santosh Patnaik
- Thoracic Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eigo Otsuji
- Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA. .,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan. .,Department of Surgery, Yokohama City University, Yokohama, Japan. .,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan. .,Department of Breast Surgery and Oncology, Fukushima Medical University, Fukushima, Japan. .,Breast Oncology and Surgery, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
5
|
Lysophospholipid Signaling in the Epithelial Ovarian Cancer Tumor Microenvironment. Cancers (Basel) 2018; 10:cancers10070227. [PMID: 29987226 PMCID: PMC6071084 DOI: 10.3390/cancers10070227] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
As one of the important cancer hallmarks, metabolism reprogramming, including lipid metabolism alterations, occurs in tumor cells and the tumor microenvironment (TME). It plays an important role in tumorigenesis, progression, and metastasis. Lipids, and several lysophospholipids in particular, are elevated in the blood, ascites, and/or epithelial ovarian cancer (EOC) tissues, making them not only useful biomarkers, but also potential therapeutic targets. While the roles and signaling of these lipids in tumor cells are extensively studied, there is a significant gap in our understanding of their regulations and functions in the context of the microenvironment. This review focuses on the recent study development in several oncolipids, including lysophosphatidic acid and sphingosine-1-phosphate, with emphasis on TME in ovarian cancer.
Collapse
|