1
|
Alavi MS, Al-Asady AM, Fanoudi S, Sadeghnia HR. Differential effects of antiseizure medications on neurogenesis: Evidence from cells to animals. Heliyon 2024; 10:e26650. [PMID: 38420427 PMCID: PMC10901100 DOI: 10.1016/j.heliyon.2024.e26650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Neurogenesis, the process of generating functionally integrated neurons from neural stem and progenitor cells, is involved in brain development during embryonic stages but continues throughout life. Adult neurogenesis plays essential roles in many brain functions such as cognition, brain plasticity, and repair. Abnormalities in neurogenesis have been described in many neuropsychiatric and neurological disorders, including epilepsy. While sharing a common property of suppressing seizures, accumulating evidence has shown that some antiseizure medications (ASM) exhibit neuroprotective potential in the non-epileptic models including Parkinson's disease, Alzheimer's disease, cerebral ischemia, or traumatic brain injury. ASM are a heterogeneous group of medications with different mechanisms of actions. Therefore, it remains to be revealed whether neurogenesis is a class effect or related to them all. In this comprehensive literature study, we reviewed the literature data on the influence of ASM on the neurogenesis process during brain development and also in the adult brain under physiological or pathological conditions. Meanwhile, we discussed the underlying mechanisms associated with the neurogenic effects of ASM by linking the reported in vivo and in vitro studies. PubMed, Web of Science, and Google Scholar databases were searched until the end of February 2023. A total of 83 studies were used finally. ASM can modulate neurogenesis through the increase or decrease of proliferation, survival, and differentiation of the quiescent NSC pool. The present article indicated that the neurogenic potential of ASM depends on the administered dose, treatment period, temporal administration of the drug, and normal or disease context.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Karbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
| | - Sahar Fanoudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamid R Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Lee JH, Shaker MR, Park SH, Sun W. Transcriptional Signature of Valproic Acid-Induced Neural Tube Defects in Human Spinal Cord Organoids. Int J Stem Cells 2023; 16:385-393. [PMID: 37643760 PMCID: PMC10686804 DOI: 10.15283/ijsc23012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
In vertebrates, the entire central nervous system is derived from the neural tube, which is formed through a conserved early developmental morphogenetic process called neurulation. Although the perturbations in neurulation caused by genetic or environmental factors lead to neural tube defects (NTDs), the most common congenital malformation and the precise molecular pathological cascades mediating NTDs are not well understood. Recently, we have developed human spinal cord organoids (hSCOs) that recapitulate some aspects of human neurulation and observed that valproic acid (VPA) could cause neurulation defects in an organoid model. In this study, we identified and verified the significant changes in cell-cell junctional genes/proteins in VPA-treated organoids using transcriptomic and immunostaining analysis. Furthermore, VPA-treated mouse embryos exhibited impaired gene expression and NTD phenotypes, similar to those observed in the hSCO model. Collectively, our data demonstrate that hSCOs provide a valuable biological resource for dissecting the molecular pathways underlying the currently unknown human neurulation process using destructive biological analysis tools.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Mohammed R. Shaker
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Si-Hyung Park
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Naewla S, Prajit R, Sritawan N, Suwannakot K, Sirichoat A, Aranarochana A, Wigmore P, Welbat JU. Hesperidin ameliorates impairment in hippocampal neural stem cells related to apoptosis induced by methotrexate in adult rats. Biomed Pharmacother 2023; 166:115329. [PMID: 37597319 DOI: 10.1016/j.biopha.2023.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023] Open
Abstract
Neurogenesis is a process of generating neural stem cells (NSCs) as functional neurons can be decreased after chemotherapy treatments. Methotrexate (MTX) is a folate antagonist that is used for cancer treatment but has negative effects, including oxidative stress, neuronal apoptosis and cognitive impairments. Hesperidin (Hsd), a flavonoid found in citrus fruits, has antioxidant and neuroprotection properties. This study investigated whether Hsd could attenuate impairments of hippocampal neural stem cells related to apoptosis induced by MTX. Spraque-Dawley rats (n = 24) were divided into 4 groups: (1) Vehicle group received propylene glycol (21 days) and 0.9% normal saline (day 8 and 15), (2) Hsd group received 100 mg/kg (21 days), (3) MTX group received 75 mg/kg (days 8 and 15) and (4) MTX+Hsd group received MTX, 75 mg/kg (day 8 and 15) and Hsd 100 mg/kg (21 days). Our results showed that MTX decreased hippocampal neural stem cells including SRY (sex determining region Y)-box 2 (SOX2) and nestin. MTX diminished vascular related (VR) Ki-67 positive cells in the hippocampus but not non-vascular related (NVR) Ki-67. Additionally, MTX reduced SOX2, nestin, postsynaptic density protein 95 (PSD-95) and B-cell lymphoma-2 family of proteins (Bcl-2), whereas Bax and caspase-3 were enhanced in the hippocampal tissues. Interestingly, co-treatment with Hsd and MTX revealed upregulation of SOX2, nestin and VR Ki-67 positive cells as well as elevated SOX2, nestin, PSD-95 and Bcl-2 proteins. Moreover, receiving both Hsd and MTX significantly suppressed increased Bax and caspase-3. These results confirm that Hsd can ameliorate MTX-induced impairments of hippocampal NSC proliferation and neuronal apoptosis.
Collapse
Affiliation(s)
- Salinee Naewla
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ram Prajit
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kornrawee Suwannakot
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter Wigmore
- Queen's Medical Centre, School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
4
|
Wang Y, Li S, Peng Y, Ma W, Wang Y, Li W. Progress in phase III clinical trials of molecular targeted therapy and immunotherapy for glioblastoma. CANCER INNOVATION 2023; 2:114-130. [PMID: 38090060 PMCID: PMC10686181 DOI: 10.1002/cai2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 10/15/2024]
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor, whose prognosis remains poor under the sequential standard of care, such as neurosurgery followed by concurrent temozolomide radiochemotherapy and adjuvant temozolomide chemotherapy in the presence or absence of tumor treating fields. Accordingly, the advent of molecular targeted therapy and immunotherapy has opened a new era of tumor management. A diverse range of targeted drugs have been tested in patients with GBM in phase III clinical trials. However, these drugs are ineffective for all patients, as evidenced by the fact that only a minority of patients in these trials showed prolonged survival. Furthermore, there are several published phase III clinical trials that involve immune checkpoint inhibitors, peptide vaccines, dendritic cell vaccines, and virotherapy. Accordingly, this review comprehensively overviews existing studies of targeted drugs and immunotherapy for glioma and discusses the challenge and perspective of targeted drugs and immunotherapy for glioma to clarify future directions.
Collapse
Affiliation(s)
- Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shenglan Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yichen Peng
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenbin Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Breuls N, Giarratana N, Yedigaryan L, Garrido GM, Carai P, Heymans S, Ranga A, Deroose C, Sampaolesi M. Valproic acid stimulates myogenesis in pluripotent stem cell-derived mesodermal progenitors in a NOTCH-dependent manner. Cell Death Dis 2021; 12:677. [PMID: 34226515 PMCID: PMC8257578 DOI: 10.1038/s41419-021-03936-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are debilitating neuromuscular disorders for which no cure exists. As this disorder affects both cardiac and skeletal muscle, patients would benefit from a cellular therapy that can simultaneously regenerate both tissues. The current protocol to derive bipotent mesodermal progenitors which can differentiate into cardiac and skeletal muscle relies on the spontaneous formation of embryoid bodies, thereby hampering further clinical translation. Additionally, as skeletal muscle is the largest organ in the human body, a high myogenic potential is necessary for successful regeneration. Here, we have optimized a protocol to generate chemically defined human induced pluripotent stem cell-derived mesodermal progenitors (cdMiPs). We demonstrate that these cells contribute to myotube formation and differentiate into cardiomyocytes, both in vitro and in vivo. Furthermore, the addition of valproic acid, a clinically approved small molecule, increases the potential of the cdMiPs to contribute to myotube formation that can be prevented by NOTCH signaling inhibitors. Moreover, valproic acid pre-treated cdMiPs injected in dystrophic muscles increase physical strength and ameliorate the functional performances of transplanted mice. Taken together, these results constitute a novel approach to generate mesodermal progenitors with enhanced myogenic potential using clinically approved reagents.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Lineage
- Cells, Cultured
- Coculture Techniques
- Disease Models, Animal
- Female
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/transplantation
- Male
- Mesoderm/cytology
- Mesoderm/drug effects
- Mesoderm/metabolism
- Mesoderm/transplantation
- Mice
- Mice, Knockout
- Muscle Contraction
- Muscle Development/drug effects
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/transplantation
- Muscle Strength
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophies/genetics
- Muscular Dystrophies/metabolism
- Muscular Dystrophies/physiopathology
- Muscular Dystrophies/surgery
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/transplantation
- Phenotype
- Rats
- Receptors, Notch/metabolism
- Signal Transduction
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Natacha Breuls
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000, Leuven, Belgium
| | - Nefele Giarratana
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000, Leuven, Belgium
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, via F. Sforza 35, 20122, Milano, Italy
| | - Laura Yedigaryan
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000, Leuven, Belgium
| | - Gabriel Miró Garrido
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000, Leuven, Belgium
| | - Paolo Carai
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Stephane Heymans
- CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Christophe Deroose
- Department of Nuclear Medicine, University Hospital KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000, Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
6
|
de Leeuw VC, van Nieuwland M, Bokkers BGH, Piersma AH. Culture Conditions Affect Chemical-Induced Developmental Toxicity In Vitro: The Case of Folic Acid, Methionine and Methotrexate in the Neural Embryonic Stem Cell Test. Altern Lab Anim 2020; 48:173-183. [PMID: 33034509 DOI: 10.1177/0261192920961963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vitro tests are increasingly applied in chemical hazard assessment. Basic culture conditions may affect the outcome of in vitro tests and should be optimised to reduce false predictions. The neural embryonic stem cell test (ESTn) can predict early neurodevelopmental effects of chemicals, as it mimics the differentiation of stem cells towards the neuroectodermal lineage. Normal early neural differentiation depends crucially on folic acid (FA) and methionine (MET), both elements of the one-carbon (1C) cycle. The aim of this study was to assess the concentration-dependent influence of FA and MET on neural differentiation in the ESTn, and its consequences for assay sensitivity to methotrexate (MTX), a compound that interferes with the 1C cycle. Neural differentiation was inhibited below 0.007 mM and above 0.22 mM FA, while both stem cell viability (< 0.097 mM, > 1.52 mM) and neural differentiation (< 0.181 mM, > 1.35 mM) were affected when changing MET concentrations. A 10-day exposure to 13 nM MTX inhibited neural differentiation, especially in FA- and MET-deficient conditions. However, a 24-hour exposure to 39 nM MTX decreased neural cell and neural crest cell differentiation markers only when the concentration of FA in the medium was three times the standard concentration, which was expected to have a protective effect against MTX. These results show the importance of nutrient concentrations, exposure scenarios and timing of read-outs for cell differentiation and compound sensitivity in the ESTn. Caution should be taken when interpreting results from a single in vitro test, especially when extrapolating to effects on complex morphogenetic processes, like neural tube development.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Marieke van Nieuwland
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Radboudumc, Medical Faculty, Nijmegen, the Netherlands
| | - Bas G H Bokkers
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Label-free classification of neurons and glia in neural stem cell cultures using a hyperspectral imaging microscopy combined with machine learning. Sci Rep 2019; 9:633. [PMID: 30679652 PMCID: PMC6345994 DOI: 10.1038/s41598-018-37241-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Due to a growing demand for a viable label-free observation method in the biomedical field, many techniques, such as quantitative phase imaging and Raman spectroscopy, have been studied, and a complementary approach, hyperspectral imaging, has also been introduced. We developed a high-speed hyperspectral imaging microscopy imaging method with commercially available apparatus, employing a liquid crystal tunable bandpass filter combined with a pixel-wise machine learning classification. Next, we evaluated the feasibility of the application of this method for stem cell research utilizing neural stem cells. Employing this microscopy method, with a 562 × 562 μm2 field of view, 2048 × 2048 pixel resolution images containing 63 wavelength pixel-wise spectra could be obtained in 30 seconds. The neural stem cells were differentiated into neurons and astroglia (glia), and a four-class cell classification evaluation (including neuronal cell body, glial cell body, process and extracellular region) was conducted under co-cultured conditions. As a result, an average of 88% of the objects of interest were correctly classified, with an average precision of 94%, and more than 99% of the extracellular pixels were correctly segregated. These results indicated that the proposed hyperspectral imaging microscopy is feasible as a label-free observation method for stem cell research.
Collapse
|
8
|
Sahakyan V, Duelen R, Tam WL, Roberts SJ, Grosemans H, Berckmans P, Ceccarelli G, Pelizzo G, Broccoli V, Deprest J, Luyten FP, Verfaillie CM, Sampaolesi M. Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model. Sci Rep 2018; 8:2942. [PMID: 29440666 PMCID: PMC5811493 DOI: 10.1038/s41598-018-21103-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches.
Collapse
Affiliation(s)
- Vardine Sahakyan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wai Long Tam
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Scott J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, London, UK
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Berckmans
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Istituto Mediterraneo di Eccellenza Pediatrica (ISMEP), Children's Hospital "G di Cristina", Palermo, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Jan Deprest
- Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospitals KU Leuven, Leuven, Belgium
- Institute for Women's Health (IWH), University College London, London, United Kingdom
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|