Chu X, Zhou Y, Zhang S, Liu S, Li G, Xin Y. Chaetomorpha linum polysaccharides alleviate NAFLD in mice by enhancing the PPARα/CPT-1/MCAD signaling.
Lipids Health Dis 2022;
21:140. [PMID:
36529726 PMCID:
PMC9762026 DOI:
10.1186/s12944-022-01730-x]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND
Green algae contain many polysaccharides. However, there is no information on whether Chaetomorpha linum polysaccharides (CLP) can modulate lipid and glucose metabolism.
MATERIAL AND METHODS
CLP were extracted from chlorella and their components were characterized. Male C57BL/6 mice were randomized and provided with control chow as the control, or high fat diet (HFD) to induce nonalcoholic fatty liver disease (NAFLD). NAFLD mice were treated orally with water as the HFD group or with 50 or 150 mg/kg CLP daily for 10 weeks. The impact of CLP treatment on lipid and glucose metabolism and the PPARα signaling was examined by histology, Western blotting and biochemistry.
RESULTS
CLP mainly contained arabinogalactan sulfate. Compared with the control, HFD feeding increased body weights, lipid droplet liver deposition and induced hyperlipidemia, liver functional impairment and glucose intolerance in mice. Treatment with CLP, particularly with a higher dose of CLP, limited the HFD-increased body weights and liver lipid droplet deposition, mitigated the HFD-induced hyperlipidemia and improved liver function and glucose tolerance in mice. Mechanistically, feeding with HFD dramatically decreased the expression of liver PPARα, CPT-1, and MCAD, but treatment with CLP enhanced their expression in a trend of dose-dependent in mice.
CONCLUSIONS
These findings indicated that CLP treatment alleviated the gain in body weights, NAFLD, and glucose intolerance in mice after HFD feeding by enhancing the PPARα/CPT-1/MCAD signaling.
Collapse