1
|
Liashuk OS, Grygorenko OO, Volovenko YM, Waser J. Photochemical [2+2] Cycloaddition of Alkynyl Boronates. Chemistry 2023; 29:e202301650. [PMID: 37394686 DOI: 10.1002/chem.202301650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
A photochemical [2+2] cycloaddition of alkynyl boronates and maleimides is reported. The developed protocol provided 35-70 % yield of maleimide-derived cyclobutenyl boronates and demonstrated wide compatibility with various functional groups. The synthetic utility of the prepared building blocks was demonstrated for a range of transformations, including Suzuki cross-coupling, catalytic or metal-hydride reduction, oxidation, and cycloaddition reactions. With aryl-substituted alkynyl boronates, the products of double [2+2] cycloaddition were obtained predominantly. Using the developed protocol, a cyclobutene-derived analogue of Thalidomide was prepared in one step. Mechanistic studies supported the participation of the triplet-excited state maleimides and ground state alkynyl boronates in the key step of the process.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Chemical Faculty, Taras Shevchenko National University of Kyїv, Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Enamine Ltd., Kyiv, Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Oleksandr O Grygorenko
- Chemical Faculty, Taras Shevchenko National University of Kyїv, Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
- Enamine Ltd., Kyiv, Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Yulian M Volovenko
- Chemical Faculty, Taras Shevchenko National University of Kyїv, Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Nikoofar K, Sadathosainy M. Phthalic anhydride (PA): a valuable substrate in organic transformations. RSC Adv 2023; 13:23870-23946. [PMID: 37588043 PMCID: PMC10426397 DOI: 10.1039/d3ra03378c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
This review has been centralized on applications of phthalic anhydride (PA) as a valuable and significant heterocyclic substrate in two- and multicomponent organic reactions. The article has been subdivided into the following parts: (i) PA introduction by focusing on its characterization, synthesizing procedure, and multiple-aspect applications. In addition, the previous review articles based on PA have also been indicated; (ii) the applications of PA as a substrate have been subdivided into parts with a glance on the reaction components numbers; (iii) the applications of PA in esterification reactions; and (iv) some examples of PA in multistep synthesis. The review covers the corresponding literature up to the end of 2022. According to the abovementioned classifications, PA is a potent substrate to design a wide range of heterocyclic compounds that possess various kinds of properties and applications in chemistry, industry, and pharmaceuticals.
Collapse
Affiliation(s)
- Kobra Nikoofar
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +98 2188041344 +98 2188041344
| | - Mansoorehsadat Sadathosainy
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +98 2188041344 +98 2188041344
| |
Collapse
|
3
|
Experimental design optimization for the synthesis of lenalidomide nitro precursor. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Shivaleela B, Srushti SC, Shreedevi SJ, Babu RL. Thalidomide-based inhibitor for TNF-α: designing and Insilico evaluation. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-021-00393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Inflammatory diseases are the vast array of disorders caused by inflammation. During most inflammatory events, many cytokines expressions were modulated, and one such cytokine is tumor necrosis factor-alpha (TNF-α). TNF-α is mainly secreted by monocytes and macrophages. Notably, it has been proposed as a therapeutic target for several diseases. The anti-TNF biology approach is mainly based on monoclonal antibodies. The fusion protein and biosimilars are prevalent in treating inflammation for decades. Only a few small molecule inhibitors are available to inhibit the expression of TNF-α, and one such promising drug was thalidomide. Therefore, the study was carried out to design thalidomide-based small molecule inhibitors for TNF-α. The main objective of our study is to design thalidomide analogs to inhibit TNF-α using the insilico approach.
Results
Several thalidomide analogs were designed using chemsketch. After filtration of compounds through ‘Lipinski rule of 5’ by Molinspiration tool, as a result, five compounds were selected. All these compounds were subjected to molecular docking, and the study showed that all five compounds had good binding energy. However, based on ADMET predictions, two compounds (S3 and S5) were eliminated.
Conclusions
Our preliminary results suggest that S1, S2, S4 compounds showed potential ligand binding capacity with TNF-α and, interestingly, with limited or no toxicity. Our preliminary investigation and obtained results have fashioned more interest for further in vitro studies.
Collapse
|
5
|
Lambat TL, Chopra PKPG, Mahmood SH. Microwave: A Green Contrivance for the Synthesis of N-Heterocyclic Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200622114919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microwave Mediated Organic Synthesis (MMOS) is typical on the proficient heat
shift carried out by dielectric heating, which in turn, is primarily dependent on the capability
of the reagent or solvent to take up microwave energy. The employment of microwave energy
has witnessed a fast expansion in the past two decades, with novel and pioneering
applications in peptide and organic synthesis, material sciences, polymer chemistry, biochemical
processes and nanotechnology. This review summarizes current MW- mediated
catalytic reactions in use for the synthesis of a diversity of N-heterocycles by Multi-
Component Reactions (MCRs) and a variety of miscellaneous reactions. In addition, the
review addresses some aspects of the use of nanoparticles for a diversity of applications in
microwave chemistry.
Collapse
Affiliation(s)
- Trimurti L. Lambat
- Department of Chemistry, Manoharbhai Patel College of Arts, Commerce & Science, Deori, Gondia 441901, Maharashtra, India
| | - Paavan Kavi Param Gaitry Chopra
- Department of Chemistry, Government Institute of Science, Civil lines, Rabindranath Tagore Road, Nagpur 440001, Maharashtra, India
| | - Sami H. Mahmood
- Department of Physics, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
6
|
Abstract
The outstanding evidence of phthalimide pharmacophore in securing enhanced biological activities had encouraged further research and development into phthalimide-based derivatives as potential new drugs. In this study, phthalimide core was hybridized with aldehydes giving integrated imines displaying different types of functionalities and at alternating positions. The resulting compounds, therefore, provide an innovative window to explore possible differential biological effects as antioxidants and anticancer agents. A total of sixteen compounds were synthesized, and each was verified by FT-IR, H NMR, C NMR, and MS characterization. Herein, a facile single-step synthesis method was employed substituting the conventional two-step chemical production routes. Among the sixteen tested compounds, the H7 compound with hydroxyl phenolic group has shown an eminent antioxidant activity with a 19.52% decrease to the IC50 value compared to that of the control standard BHT antioxidant. On the other hand, the halogenated H6 Schiff base structure was successful in securing effective cancer inhibition to both colon and breast cancer cell lines, while maintaining selective action toward normal tissues. Results have collectively indicated the importance and impactful effects of functional groups position and types within similar basic structures, in directing different biological outcomes.
Collapse
|
7
|
Kharissova OV, Kharisov BI, Oliva González CM, Méndez YP, López I. Greener synthesis of chemical compounds and materials. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191378. [PMID: 31827868 PMCID: PMC6894553 DOI: 10.1098/rsos.191378] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 05/03/2023]
Abstract
Modern trends in the greener synthesis and fabrication of inorganic, organic and coordination compounds, materials, nanomaterials, hybrids and nanocomposites are discussed. Green chemistry deals with synthesis procedures according to its classic 12 principles, contributing to the sustainability of chemical processes, energy savings, lesser toxicity of reagents and final products, lesser damage to the environment and human health, decreasing the risk of global overheating, and more rational use of natural resources and agricultural wastes. Greener techniques have been applied to synthesize both well-known chemical compounds by more sustainable routes and completely new materials. A range of nanosized materials and composites can be produced by greener routes, including nanoparticles of metals, non-metals, their oxides and salts, aerogels or quantum dots. At the same time, such classic materials as cement, ceramics, adsorbents, polymers, bioplastics and biocomposites can be improved or obtained by cleaner processes. Several non-contaminating physical methods, such as microwave heating, ultrasound-assisted and hydrothermal processes or ball milling, frequently in combination with the use of natural precursors, are of major importance in the greener synthesis, as well as solventless and biosynthesis techniques. Non-hazardous solvents including ionic liquids, use of plant extracts, fungi, yeasts, bacteria and viruses are also discussed in relation with materials fabrication. Availability, necessity and profitability of scaling up green processes are discussed.
Collapse
Affiliation(s)
- Oxana V. Kharissova
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Boris I. Kharisov
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - César Máximo Oliva González
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Yolanda Peña Méndez
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Israel López
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIBYN), Laboratorio de Nanociencias y Nanotecnología, Universidad Autónoma de Nuevo León, UANL, Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10, Parque de Investigación e Innovación Tecnológica (PIIT), 66629 Apodaca, Nuevo León, Mexico
| |
Collapse
|
8
|
Hijji Y, Benjamin E, Jasinski JP, Butcher RJ. Crystal structure of the thalidomide analog (3a R*,7a S*)-2-(2,6-dioxopiperidin-3-yl)hexa-hydro-1 H-iso-indole-1,3(2 H)-dione. Acta Crystallogr E Crystallogr Commun 2018; 74:1595-1598. [PMID: 30443388 PMCID: PMC6218906 DOI: 10.1107/s2056989018014317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022]
Abstract
The title compound, C13H16N2O4, crystallizes in the monoclinic centrosymmetric space group, P21/c, with four mol-ecules in the asymmetric unit, thus there is no crystallographically imposed symmetry and it is a racemic mixture. The structure consists of a six-membered unsaturated ring bound to a five-membered pyrrolidine-2,5-dione ring N-bound to a six-membered piperidine-2,6-dione ring and thus has the same basic skeleton as thalidomide, except for the six-membered unsaturated ring substituted for the aromatic ring. In the crystal, the mol-ecules are linked into inversion dimers by R 2 2(8) hydrogen bonding involving the N-H group. In addition, there are bifurcated C-H⋯O inter-actions involving one of the O atoms on the pyrrolidine-2,5-dione with graph-set notation R 1 2(5). These inter-actions along with C-H⋯O inter-actions involving one of the O atoms on the piperidine-2,6-dione ring link the mol-ecules into a complex three-dimensional array. There is pseudomerohedral twinning present which results from a 180° rotation about the [100] reciprocal lattice direction and with a twin law of 1 0 0 0 0 0 0 [BASF 0.044 (1)].
Collapse
Affiliation(s)
- Yousef Hijji
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Ellis Benjamin
- Department of Chemistry, Richard Stockton College of New Jersey, Galloway, NJ 08205, USA
| | - Jerry P Jasinski
- Department of Chemistry, Keene State College, 229 Main Street, Keene NH 03435, USA
| | - Ray J Butcher
- Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
| |
Collapse
|