1
|
The impact of modifier genes on cone-rod dystrophy heterogeneity: An explorative familial pilot study and a hypothesis on neurotransmission impairment. PLoS One 2022; 17:e0278857. [PMID: 36490268 PMCID: PMC9733859 DOI: 10.1371/journal.pone.0278857] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cone-rod dystrophies (CORDs) are a heterogeneous group of inherited retinopathies (IRDs) with more than 30 already known disease-causing genes. Uncertain phenotypes and extended range of intra- and interfamilial heterogenicity make still difficult to determine a precise genotype-phenotype correlation. Here, we used a next-generation sequencing approach to study a Sicilian family with a suspected form of CORD. Affected family members underwent ophthalmological examinations and a proband, blind from 50 years, underwent whole genome and exome sequencing. Variant analysis was enriched by pathway analysis and relevant variants were, then, investigated in other family members and in 100 healthy controls from Messina. CORD diagnosis with an intricate pattern of symptoms was confirmed by ophthalmological examinations. A total of about 50,000 variants were identified in both proband's genome and exome. All affected family members presented specific genotypes mainly determined by mutated GUCY2D gene, and different phenotypical traits, mainly related to focus and color perception. Thus, we looked for possible modifier genes. According to relationship with GUCY2D, predicted functional effects, eye localization, and ocular disease affinity, only 9 variants, carried by 6 genes (CACNG8, PAX2, RXRG, CCDC175, PDE4DIP and LTF), survived the filtering. These genes encode key proteins involved in cone development and survival, and retina neurotransmission. Among analyzed variants, CACNG8c.*6819A>T and the new CCDC175 c.76C>T showed extremely low frequency in the control group, suggesting a key role on disease phenotypes. Such discovery could enforce the role of modifier genes into CORD onset/progression, contributing to improve diagnostic test towards a better personalized medicine.
Collapse
|
2
|
Boertien TM, Van Someren EJW, Coumou AD, van den Broek AK, Klunder JH, Wong WY, van der Hoeven AE, Drent ML, Romijn JA, Fliers E, Bisschop PH. Compression of the optic chiasm is associated with reduced photoentrainment of the central biological clock. Eur J Endocrinol 2022; 187:809-821. [PMID: 36201161 DOI: 10.1530/eje-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Pituitary tumours that compress the optic chiasm are associated with long-term alterations in sleep-wake rhythm. This may result from damage to intrinsically photosensitive retinal ganglion cells (ipRGCs) projecting from the retina to the hypothalamic suprachiasmatic nucleus via the optic chiasm to ensure photoentrainment (i.e. synchronisation to the 24-h solar cycle through light). To test this hypothesis, we compared the post-illumination pupil response (PIPR), a direct indicator of ipRGC function, between hypopituitarism patients with and without a history of optic chiasm compression. DESIGN Observational study, comparing two predefined groups. METHODS We studied 49 patients with adequately substituted hypopituitarism: 25 patients with previous optic chiasm compression causing visual disturbances (CC+ group) and 24 patients without (CC- group). The PIPR was assessed by chromatic pupillometry and expressed as the relative change between baseline and post-blue-light stimulus pupil diameter. Objective and subjective sleep parameters were obtained using polysomnography, actigraphy, and questionnaires. RESULTS Post-blue-light stimulus pupillary constriction was less sustained in CC+ patients compared with CC- patients, resulting in a significantly smaller extended PIPR (mean difference: 8.1%, 95% CI: 2.2-13.9%, P = 0.008, Cohen's d = 0.78). Sleep-wake timing was consistently later in CC+ patients, without differences in sleep duration, efficiency, or other rest-activity rhythm features. Subjective sleep did not differ between groups. CONCLUSION Previous optic chiasm compression due to a pituitary tumour in patients with hypopituitarism is associated with an attenuated PIPR and delayed sleep timing. Together, these data suggest that ipRGC function and consequently photoentrainment of the central biological clock is impaired in patients with a history of optic chiasm compression.
Collapse
Affiliation(s)
- Tessel M Boertien
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| | - Eus J W Van Someren
- Netherlands Institute for Neuroscience (NIN), Sleep and Cognition, Amsterdam, The Netherlands
- Amsterdam UMC location VU University, Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress & Sleep, Amsterdam, The Netherlands
- VU University, Centre for Neurogenomics and Cognitive Research, Integrative Neurophysiology, Amsterdam, The Netherlands
| | - Adriaan D Coumou
- Amsterdam UMC location University of Amsterdam, Ophthalmology, Amsterdam, The Netherlands
| | - Annemieke K van den Broek
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Jet H Klunder
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Wing-Yi Wong
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Adrienne E van der Hoeven
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Madeleine L Drent
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location VU University, Internal Medicine, Section of Endocrinology, Amsterdam, The Netherlands
| | - Johannes A Romijn
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Amsterdam, The Netherlands
| | - Eric Fliers
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| | - Peter H Bisschop
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Leclercq B, Hicks D, Laurent V. Photoperiod integration in C3H rd1 mice. J Pineal Res 2021; 71:e12711. [PMID: 33326640 DOI: 10.1111/jpi.12711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
In mammals, the suprachiasmatic nuclei (SCN) constitute the main circadian clock, receiving input from the retina which allows synchronization of endogenous biological rhythms with the daily light/dark cycle. Over the year, the SCN encodes photoperiodic variations through duration of melatonin secretion, with abundant nocturnal levels in winter and lower levels in summer. Thus, light information is critical to regulate seasonal reproduction in many species and is part of the central photoperiodic integration. Since intrinsically photosensitive retinal ganglion cells (ipRGCs) are vital for circadian photoentrainment and other nonvisual functions, we studied the contribution of ipRGCs in photoperiod integration in C3H retinal degeneration 1 (rd1) mice. We assessed locomotor activity and melatonin secretion in mice exposed to short or long photoperiods. Our results showed that rd1 mice are still responsive to photoperiod variations in term of locomotor activity, melatonin secretion, and regulation of the reproductive axis. In addition, retinas of animals exposed to short photoperiod exhibit higher melanopsin labeling intensity compared with the long photoperiod condition, suggesting seasonal-dependent changes within this photoreceptive system. These results show that ipRGCs in rd1 mice can still measure photoperiod and suggest a key role of melanopsin cells in photoperiod integration and the regulation of seasonal physiology.
Collapse
Affiliation(s)
- Bastien Leclercq
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| | - David Hicks
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| | - Virginie Laurent
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
An K, Zhao H, Miao Y, Xu Q, Li YF, Ma YQ, Shi YM, Shen JW, Meng JJ, Yao YG, Zhang Z, Chen JT, Bao J, Zhang M, Xue T. A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat Neurosci 2020; 23:869-880. [PMID: 32483349 DOI: 10.1038/s41593-020-0640-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
Besides generating vision, light modulates various physiological functions, including mood. While light therapy applied in the daytime is known to have anti-depressive properties, excessive light exposure at night has been reportedly associated with depressive symptoms. The neural mechanisms underlying this day-night difference in the effects of light are unknown. Using a light-at-night (LAN) paradigm in mice, we showed that LAN induced depressive-like behaviors without disturbing the circadian rhythm. This effect was mediated by a neural pathway from retinal melanopsin-expressing ganglion cells to the dorsal perihabenular nucleus (dpHb) to the nucleus accumbens (NAc). Importantly, the dpHb was gated by the circadian rhythm, being more excitable at night than during the day. This indicates that the ipRGC→dpHb→NAc pathway preferentially conducts light signals at night, thereby mediating LAN-induced depressive-like behaviors. These findings may be relevant when considering the mental health effects of the prevalent nighttime illumination in the industrial world.
Collapse
Affiliation(s)
- Kai An
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huan Zhao
- College of Biology, Food and Environment, Hefei University, Hefei, China.
| | - Ying Miao
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qi Xu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu-Fei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu-Qian Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi-Ming Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Wei Shen
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jian-Jun Meng
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ju-Tao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jin Bao
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Sondereker KB, Stabio ME, Renna JM. Crosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J Comp Neurol 2020; 528:2044-2067. [PMID: 32003463 DOI: 10.1002/cne.24873] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin ganglion cells have defied convention since their discovery almost 20 years ago. In the years following, many types of these intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged. In the mouse retina, there are currently six known types (M1-M6) of melanopsin ganglion cells, each with unique morphology, mosaics, connections, physiology, projections, and functions. While melanopsin-expressing cells are usually associated with behaviors like circadian photoentrainment and the pupillary light reflex, the characterization of multiple types has demonstrated a reach that may extend far beyond non-image-forming vision. In fact, studies have shown that individual types of melanopsin ganglion cells have the potential to impact image-forming functions like contrast sensitivity and color opponency. Thus, the goal of this review is to summarize the morphological and functional aspects of the six known types of melanopsin ganglion cells in the mouse retina and to highlight their respective roles in non-image-forming and image-forming vision. Although many melanopsin ganglion cell types do project to image-forming brain targets, it is important to note that this is only the first step in determining their influence on image-forming vision. Even so, the visual system has canonically been divided into these two functional realms and melanopsin ganglion cells have begun to challenge the boundary between them, providing an overlap of visual information that is complementary rather than redundant. Further studies on these ganglion cell photoreceptors will no doubt continue to illustrate an ever-expanding role for melanopsin ganglion cells in image-forming vision.
Collapse
Affiliation(s)
| | - Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
6
|
Gubin DG, Malishevskaya ТN, Astakhov YS, Astakhov SY, Cornelissen G, Kuznetsov VA, Weinert D. Progressive retinal ganglion cell loss in primary open-angle glaucoma is associated with temperature circadian rhythm phase delay and compromised sleep. Chronobiol Int 2019; 36:564-577. [PMID: 30663431 DOI: 10.1080/07420528.2019.1566741] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Advanced primary open-angle glaucoma (POAG) is characterized by progressive retinal ganglion cell complex (RGCC) damage that may cause subsequent disruption of the circadian rhythms. Therefore, we evaluated circadian body temperature (BT) rhythm and sleep characteristics of 115 individuals (38 men and 77 women) diagnosed with POAG. GLV (global loss volume; %), a measure of RGCC damage, was estimated by high-definition optical coherence tomography, and RGC functional ability was assessed by pattern electroretinogram amplitude (PERGA). Depending on dynamics of POAG progression criteria, two groups were formed that were distinctively different in GLV: Stable POAG group (S-POAG; GLV = 5.95 ± 1.84, n = 65) and Progressive POAG group (P-POAG; GLV = 24.27 ± 5.09, n = 50). S-POAG and P-POAG groups were not different in mean age (67.61 ± 7.56 versus 69.98 ± 8.15) or body mass index (24.66 ± 3.03 versus 24.77 ± 2.90). All subjects performed 21 around-the-clock BT self-measurements during a 72-h period and kept activity/sleep diaries. Results showed pronounced disruption of circadian physiology in POAG and its progression with increasing severity of the disease. The daily mean of BT was unusually low, compared to age-matched controls. Moreover, our results revealed distinctive features of BT circadian rhythm alterations in POAG development and POAG progression. S-POAG is associated with lowered BT circadian rhythm robustness and inter-daily phase stability compared to controls. In the P-POAG group, the mean phase of the circadian BT rhythm was delayed by about 5 h and phases were highly scattered among individual patients, which led to reduced group mean amplitude. Circadian amplitudes of individuals were not different between the groups. Altogether, these results suggest that the body clock still works in POAG patients, but its entrainment to the 24-h environment is compromised. Probably because of the internal desynchronization, bedtime is delayed, and sleep duration is accordingly shortened by about 55 min in P-POAG compared to S-POAG patients. In the entire POAG cohort (both groups), later sleep phase and shorter mean sleep duration correlate with the delayed BT phase (r = 0.215; p = 0.021 and r = 0.322; p = 0.0004, respectively). An RGCC GLV of 15% apparently constitutes a threshold above which a delay of the circadian BT rhythm and a shortening of sleep duration occur.
Collapse
Affiliation(s)
- D G Gubin
- a Department of Biology , Medical University , Tyumen , Russia.,b Tyumen Cardiology Research Center , Tomsk National Research Medical Center, Russian Academy of Science , Tomsk , Russia
| | - Т N Malishevskaya
- c Department of Organization of Medical Care , State Autonomous Health Care Institution Tyumen Regional Ophthalmological Dispensary , Tyumen , Russia.,d Department of Ophthalmology and Optometry , West-Siberian Institute of Postgraduate Medical Education , Tyumen , Russia
| | - Y S Astakhov
- e Department of Ophthalmology , Pavlov First Saint Petersburg State Medical University , St. Petersburg , Russia
| | - S Y Astakhov
- e Department of Ophthalmology , Pavlov First Saint Petersburg State Medical University , St. Petersburg , Russia
| | - G Cornelissen
- f Halberg Chronobiology Center , University of Minnesota , Minneapolis , MN , USA
| | - V A Kuznetsov
- b Tyumen Cardiology Research Center , Tomsk National Research Medical Center, Russian Academy of Science , Tomsk , Russia
| | - D Weinert
- g Institute of Biology/Zoology , Martin Luther University , Halle-Wittenberg , Germany
| |
Collapse
|