1
|
Gao J, Zhao Z, Pan H, Huang Y. Significance of dysregulated M2 macrophage and ESR2 in the ovarian metastasis of gastric cancer. Transl Cancer Res 2024; 13:2674-2690. [PMID: 38988946 PMCID: PMC11231788 DOI: 10.21037/tcr-24-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
Background Prognosis of gastric cancer (GC) patients with ovarian metastasis (OM) remains poor. We hereby characterized the role of tumor immune microenvironment (TIME) and identified potential key regulators in the OM with the aim of understanding its molecular basis to develop novel therapeutic targets. Methods Transcriptomic analyses of paired primary and ovarian metastatic lesions of seven GC patients from Fudan University Shanghai Cancer Center uncovered and functionally annotated their differentially expressed genes (DEGs). CIBERSORT analysis revealed differential TIME between primary GCs and OMs, which was further validated by multiplex immunofluorescence (mIF). Unique overexpression of candidate regulator in OMs was validated by an immunohistochemical (IHC) staining-based cohort study and in vitro cell growth, migration and invasion assays were conducted to characterize its function in GC progression. Results Functional enrichment analyses of DEGs between GCs and matched OMs revealed multiple significantly dysregulated immune-related and cancer-related pathways. Distinctive subsets of immune cells, especially M2 macrophage, were selectively enriched in metastatic lesions. mIF-based quantification further validated the overexpression of CD68+CD206+ M2 macrophage in the OMs. Estrogen receptor 2 (ESR2), which encodes estrogen receptor β (ERβ), was not only potentially correlated with M2 macrophage but also overexpressed in the OM of GC. ESR2 was up-regulated in cancerous tissue and its high expression correlated with younger age, more advanced lymph node metastasis and pathological stage, as well as a worse patient survival. IHC staining of ERβ in the cohort of paired primary and metastatic GCs validated its selective overexpression in OMs. Small-interfering RNAs (siRNAs)-induced knockdown of ESR2 significantly inhibited the invasion and migration of both AGS and HGC-27 GC cell lines. Conclusions Comparative RNA-sequencing analysis revealed the dysregulated TIME, M2 macrophage in particular, between primary GC and OM. ESR2 potentially correlated with M2 macrophage and played pro-oncogenic roles in GC progression and metastasis.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenxiong Zhao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yakai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Novel Therapeutic Application of Self-Assembly Peptides Targeting the Mitochondria in In Vitro and In Vivo Experimental Models of Gastric Cancer. Int J Mol Sci 2020; 21:ijms21176126. [PMID: 32854415 PMCID: PMC7504046 DOI: 10.3390/ijms21176126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
Here, we provide the possibility of a novel chemotherapeutic agent against gastric cancer cells, comprising the combination of 5-fluorouracil (5-FU) and a mitochondria-targeting self-assembly peptide, which is a phenylalanine dipeptide with triphenyl phosphonium (Mito-FF). The anticancer effects and mechanisms of 5-FU and Mito-FF, individually or in combination, were compared through both in vitro and in vivo models of gastric cancer. Our experiments consistently demonstrated that the 5-FU and Mito-FF combination therapy was superior to monotherapy with either, as manifested by both higher reduction of proliferation as well as an induction of apoptotic cell death. Interestingly, we found that combining 5-FU with Mito-FF leads to a significant increase of reactive oxygen species (ROS) and reduction of antioxidant enzymes in gastric cancer cells. Moreover, the inhibition of ROS abrogated the pro-apoptotic effects of combination therapy, suggesting that enhanced oxidative stress could be the principal mechanism of the action of combination therapy. We conclude that the combination of 5-FU and Mito-FF exerts potent antineoplastic activity against gastric cancer cells, primarily by promoting ROS generation and suppressing the activities of antioxidant enzymes.
Collapse
|
4
|
Production and Evaluation of an Avian IgY Immunotoxin against CD133+ for Treatment of Carcinogenic Stem Cells in Malignant Glioma: IgY Immunotoxin for the Treatment of Glioblastoma. JOURNAL OF ONCOLOGY 2019; 2019:2563092. [PMID: 31275378 PMCID: PMC6582814 DOI: 10.1155/2019/2563092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Background Glioblastoma is the most common malignant tumor of Central Nervous System. Despite the research in therapeutics, the prognosis is dismal. Malignant glioma stem cells (MGSCs) are a major cause of treatment failure and increasing tumor recurrence. In general, cancer stem cells (CSCs) express prominin-1 (CD133), considered as a potential therapeutic target. In this study, we produced an avian immunotoxin directed against the subpopulation of CD133+ CSCs within a malignant glioma. We used the avian IgY because it has various advantages as increased affinity to mammal antigens and inexpensive obtention of large amounts of specific antibodies (approximately 1 mg/per egg). The design, production, purification and use of IgY anti CD133 immunotoxin constitute an original goal of this research. Methods The immunodominant peptide of CD133 was designed to immunize hens; also, the extracellular domain of CD133 was cloned to probe the IgY antibodies. In parallel, a recombinant abrin A chain was produced in E. coli in order to join it to the Fc domain of the anti-CD133 IgY to conform the immunotoxin. This anti-CD133 IgY anti-tumor immunotoxin was tested in vitro and in vivo. Results. The cytotoxicity of the immunotoxin in vitro showed that IgY-abrin immunotoxin reduced 55% cell viability. After subcutaneous MGSCs implantation, the animals treated intraperitoneally or intratumorally with the IgY-abrin immunotoxin showed more than 50% decrease of tumor volume. Conclusion Results showed that the IgY-abrin immunotoxin had cytotoxic activity against CD133+ MGSCs and provides a novel approach for the immunotherapy of glioblastoma.
Collapse
|
5
|
Tang M, Svirskis D, Leung E, Kanamala M, Wang H, Wu Z. Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer? J Control Release 2019; 305:89-100. [PMID: 31096017 DOI: 10.1016/j.jconrel.2019.05.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Chemoresistance poses a major challenge in cancer treatment. This study aims to investigate whether intracellular drug delivery using hyaluronic acid (HA) functionalised pH-sensitive liposomes (HA-pSL) can circumvent gemcitabine resistance in pancreatic cancer (PC). HA-pSL were obtained by covalently conjugating HA with preformed pSL. A resistant PC cell line Gr2000 was developed by exposing MIA PaCa-2 cells to gemcitabine, and characterised for their expression of CD44, a receptor for HA, and drug transporters. Cellular uptake and intracellular trafficking of liposomes were determined by confocal microscopy and HPLC analysis of intracellular drug content. Following a pharmacokinetic study in rats, anti-tumour efficacy was compared between MIA PaCa-2 and Gr2000 xenograft mouse models. HA-pSL with an HA density of 179 μg/μmol had a larger size (152.3 vs 136.3 nm), and higher zeta potential (-46.8 vs -10.5 mV) than pSL. The sensitivity of Gr2000 to gemcitabine reduced 444 times compared to its parental cell line, despite no change to the total drug influx, as drug influx- and efflux-transporters in Gr2000 cells were simultaneously up-regulated. Both cell lines had high expression of CD44. HA facilitated cell uptake without compromising the endosome-escape ability of pSL as evidenced by confocal images and co-localization analysis of the dual-fluorescence labelled liposomes and Lysotracker. HA-pSL significantly outperformed pSL, and increased cellular drug influx by 3.6 times in MIA PaCa-2 cells, and 4.6 times in Gr2000 cells. Both liposomes improved the pharmacokinetic profile of free drug. HA-pSL treatment was superior to pSL, and resulted in 6.4 times smaller tumours (weight) in the MIA PaCa-2 xenograft models, and 3.1 smaller in the Gr2000 models compared with the free drug. Taken together, this study highlighted the use of intracellular delivery strategies (HA-CD44 interaction and endosome escape) to overcome gemcitabine resistance, however, the overall improvement was marginal and tumours still existed. Further improvement in delivery efficiency of HA-pSL to target tumours and additional manipulation of the cellular metabolism of gemcitabine are needed to tackle chemoresistance.
Collapse
Affiliation(s)
- Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Manju Kanamala
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Hongbo Wang
- School of Pharmacy, Yantai University, Yantai 264005, PR China.
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|