1
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
2
|
Zhang J, Wu P, Wen Q. Optimization strategies for mesenchymal stem cell-based analgesia therapy: a promising therapy for pain management. Stem Cell Res Ther 2024; 15:211. [PMID: 39020426 PMCID: PMC11256674 DOI: 10.1186/s13287-024-03828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Pain is a very common and complex medical problem that has a serious impact on individuals' physical and mental health as well as society. Non-steroidal anti-inflammatory drugs and opioids are currently the main drugs used for pain management, but they are not effective in controlling all types of pain, and their long-term use can cause adverse effects that significantly impair patients' quality of life. Mesenchymal stem cells (MSCs) have shown great potential in pain treatment. However, limitations such as the low proliferation rate of MSCs in vitro and low survival rate in vivo restrict their analgesic efficacy and clinical translation. In recent years, researchers have explored various innovative approaches to improve the therapeutic effectiveness of MSCs in pain treatment. This article reviews the latest research progress of MSCs in pain treatment, with a focus on methods to enhance the analgesic efficacy of MSCs, including engineering strategies to optimize the in vitro culture environment of MSCs and to improve the in vivo delivery efficiency of MSCs. We also discuss the unresolved issues to be explored in future MSCs and pain research and the challenges faced by the clinical translation of MSC therapy, aiming to promote the optimization and clinical translation of MSC-based analgesia therapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
3
|
Rahman MM, Lee JY, Kim YH, Park CK. Epidural and Intrathecal Drug Delivery in Rats and Mice for Experimental Research: Fundamental Concepts, Techniques, Precaution, and Application. Biomedicines 2023; 11:biomedicines11051413. [PMID: 37239084 DOI: 10.3390/biomedicines11051413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Epidural and intrathecal routes are the most effective drug administration methods for pain management in clinical and experimental medicine to achieve quick results, reduce required drug dosages, and overcome the adverse effects associated with the oral and parenteral routes. Beyond pain management with analgesics, the intrathecal route is more widely used for stem cell therapy, gene therapy, insulin delivery, protein therapy, and drug therapy with agonist, antagonist, or antibiotic drugs in experimental medicine. However, clear information regarding intrathecal and epidural drug delivery in rats and mice is lacking, despite differences from human medicine in terms of anatomical space and proximity to the route of entry. In this study, we discussed and compared the anatomical locations of the epidural and intrathecal spaces, cerebrospinal fluid volume, dorsal root ganglion, techniques and challenges of epidural and intrathecal injections, dosage and volume of drugs, needle and catheter sizes, and the purpose and applications of these two routes in different disease models in rats and mice. We also described intrathecal injection in relation to the dorsal root ganglion. The accumulated information about the epidural and intrathecal delivery routes could contribute to better safety, quality, and reliability in experimental research.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Zhao L, Tao X, Song T. Astaxanthin alleviates neuropathic pain by inhibiting the MAPKs and NF-κB pathways. Eur J Pharmacol 2021; 912:174575. [PMID: 34673033 DOI: 10.1016/j.ejphar.2021.174575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
Neuropathic pain is a complex condition that usually lasts a lifetime and has a major negative impact on life after injury. Improving pain management is an important and unmet need. Astaxanthin (AST) is a natural marine medicine with effective antioxidant and anti-inflammatory properties and neuroprotective effects. However, few mechanisms can explain the role of AST in the treatment of neuropathic pain. In the present study, we examined its potential to eliminate spinal nerve ligation (SNL) damage by inhibiting the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-κB (NF-κB) p65 and the inflammatory response. The results of behavior tests indicated the promising role of AST in analgesic effect in SNL mice. AST decreased the neuronal and non-neuronal activation, the levels of the inflammatory signaling mediators (p-ERK1/2 p-p38 MAPK and NF-κB p65) and inflammatory cytokine expression (interleukin [IL]-1, IL-17, IL-6, and tumor necrosis factor-α [TNF-α]. These results suggest that AST is a promising candidate to reduce nociceptive hypersensitization after SNL.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China
| | - Xueshu Tao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China
| | - Tao Song
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China.
| |
Collapse
|
5
|
Transplantation of Mesenchymal Stromal Cells Expressing the Human Preproenkephalin Gene Can Relieve Pain in a Rat Model of Neuropathic Pain. Neurochem Res 2020; 45:2065-2071. [PMID: 32529390 DOI: 10.1007/s11064-020-03068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Transgenic therapy for central neuralgia faces the problems of low expression and weak targeting and affects superficial but not deep neurons. In this study, we generated a lentivirus vector with human preproenkephalin gene (hPPE) expression driven by the transcriptional amplification strategy system (TAS) and established a primary bone marrow-derived mesenchymal stromal cell (BMSC) line stably expressing hPPE for transplantation into a rat model of neuropathic pain rat. The paw thermal withdrawal latency assay and paw mechanical withdrawal threshold assay showed that unlike control BMSCs and BMSCs with hPPE overexpression driven by the CMV or Synapsin 1 (SYN1) promoter, TAS-hPPE BMSCs had a robust and lasting analgesic effect. The TAS-hPPE BMSC-treated group exhibited higher expression of TAS-driven hPPE and a higher ratio of BMSCs in the midbrain, spinal cord and cortex then the CMV-hPPE BMSC- and SYN1-hPPE BMSC-treated groups. Moreover, we also observed that TAS-hPPE BMSCs displayed a greater tendency to differentiate into neurons and exhibit neuronal-like distribution than CMV-hPPE or SYN1-hPPE BMSCs. In conclusion, our study shows that the TAS improves BMSC transgenic therapy for neuropathic pain treatment.
Collapse
|
6
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
7
|
Ren J, Liu N, Sun N, Zhang K, Yu L. Mesenchymal Stem Cells and their Exosomes: Promising Therapeutics for Chronic Pain. Curr Stem Cell Res Ther 2019; 14:644-653. [PMID: 31512998 DOI: 10.2174/1574888x14666190912162504] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/27/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Chronic pain is a common condition that seriously affects the quality of human life with
variable etiology and complicated symptoms; people who suffer from chronic pain may experience
anxiety, depression, insomnia, and other harmful emotions. Currently, chronic pain treatments are nonsteroidal
anti-inflammatory drugs and opioids; these drugs are demonstrated to be insufficient and
cause severe side effects. Therefore, research into new therapeutic strategies for chronic pain is a top
priority. In recent years, stem cell transplantation has been demonstrated to be a potent alternative for
the treatment of chronic pain. Mesenchymal stem cells (MSCs), a type of pluripotent stem cell, exhibit
multi-directional differentiation, promotion of stem cell implantation, and immune regulation; they
have also been shown to exert analgesic effects in several chronic pain models. Exosomes produced by
MSCs have been demonstrated to relieve painful symptoms with fewer side effects. In this review, we
summarize the therapeutic use of MSCs in various chronic pain studies. We also discuss ways to enhance
the treatment effect of MSCs. We predict in the future, cell-free therapies for chronic pain will
develop from exosomes secreted by MSCs.
Collapse
Affiliation(s)
- Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Kehan Zhang
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Wang W, Jiang Q, Wu J, Tang W, Xu M. Upregulation of bone morphogenetic protein 2 ( Bmp2) in dorsal root ganglion in a rat model of bone cancer pain. Mol Pain 2019; 15:1744806918824250. [PMID: 30799697 PMCID: PMC6329035 DOI: 10.1177/1744806918824250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bone cancer pain is one of the most severe and intractable complications in patients suffering from primary or metastatic bone cancer and profoundly compromises the quality of life. Emerging evidence indicates that the dorsal root ganglion play an integral role in the modulation of pain hypersensitivity. However, the underlying molecular mechanisms during dorsal root ganglion-mediated bone cancer pain remain elusive. In this study, RNA-sequencing was used to detect the differentially expressed genes in dorsal root ganglion neurons of a rat bone cancer pain model established by intratibial inoculation of Walker 256 breast cancer cells. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed genes (fold change > 1.5; false discovery rate < 0.05) were enriched in the bone morphogenetic protein (BMP) signaling pathway, transforming growth factor-β signaling pathway, and positive regulation of cartilage development. Importantly, serum deprivation-response protein (Sdpr), hephaestin (Heph), transthyretin (Ttr), insulin receptor substrate 1 (Irs1), connective tissue growth factor (Ctgf ), and Bmp2 genes were associated with bone pain and degeneration. Of note, Bmp2, a pleiotropic and secreted molecule mediating pain and inflammation, was one of the most significantly upregulated genes in dorsal root ganglion neurons in this bone cancer pain model. Consistent with these data, upregulation of Bmp2 in the bone cancer pain model was validated by immunohistochemistry, real-time quantitative polymerase chain reaction, and western blotting. Importantly, intrathecal administration of siRNA significantly reduced Bmp2 transcription and ameliorated bone cancer pain in rat as shown by paw withdrawal mechanical threshold and spontaneous and movement-evoked pain-like behaviors. In conclusion, we have characterized the comprehensive gene expression profile of dorsal root ganglion from a bone cancer pain rat model by RNA-sequencing and identified Bmp2 as a potential therapeutic target for bone cancer pain treatment.
Collapse
Affiliation(s)
- Wei Wang
- 1 Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiliang Jiang
- 1 Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingxiang Wu
- 1 Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Tang
- 1 Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Meiying Xu
- 1 Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Shenoy PA, Kuo A, Khan N, Gorham L, Nicholson JR, Corradini L, Vetter I, Smith MT. The Somatostatin Receptor-4 Agonist J-2156 Alleviates Mechanical Hypersensitivity in a Rat Model of Breast Cancer Induced Bone Pain. Front Pharmacol 2018; 9:495. [PMID: 29867498 PMCID: PMC5962878 DOI: 10.3389/fphar.2018.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
In the majority of patients with breast cancer in the advanced stages, skeletal metastases are common, which may cause excruciating pain. Currently available drug treatments for relief of breast cancer-induced bone pain (BCIBP) include non-steroidal anti-inflammatory drugs and strong opioid analgesics along with inhibitors of osteoclast activity such as bisphosphonates and monoclonal antibodies such as denosumab. However, these medications often lack efficacy and/or they may produce serious dose-limiting side effects. In the present study, we show that J-2156, a somatostatin receptor type 4 (SST4 receptor) selective agonist, reverses pain-like behaviors in a rat model of BCIBP induced by unilateral intra-tibial injection of Walker 256 breast cancer cells. Following intraperitoneal administration, the ED50 of J-2156 for the relief of mechanical allodynia and mechanical hyperalgesia in the ipsilateral hindpaws was 3.7 and 8.0 mg/kg, respectively. Importantly, the vast majority of somatosensory neurons in the dorsal root ganglia including small diameter C-fibers and medium-large diameter fibers, that play a crucial role in cancer pain hypersensitivities, expressed the SST4 receptor. J-2156 mediated pain relief in BCIBP-rats was confirmed by observations of a reduction in the levels of phosphorylated extracellular signal-regulated kinase (pERK), a protein essential for central sensitization and persistent pain, in the spinal dorsal horn. Our results demonstrate the potential of the SST4 receptor as a pharmacological target for relief of BCIBP and we anticipate the present work to be a starting point for further mechanism-based studies.
Collapse
Affiliation(s)
- Priyank A Shenoy
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nemat Khan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Louise Gorham
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|