1
|
González Molina LA, Dolga AM, Rots MG, Sarno F. The Promise of Epigenetic Editing for Treating Brain Disorders. Subcell Biochem 2025; 108:111-190. [PMID: 39820862 DOI: 10.1007/978-3-031-75980-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation. These biomarkers, although not yet translated into clinically approved options, offer therapeutic targets as epigenetic modifications are reversible. Indeed, clinical trials are designed to inhibit epigenetic writers, erasers, or readers using epigenetic drugs to interfere with epigenetic dysregulation in brain disorders. However, since such drugs elicit genome-wide effects and potentially cause toxicity, the recent developments in the field of epigenetic editing are gaining widespread attention. In this review, we provide examples of epigenetic biomarkers and epi-drugs, while describing efforts in the field of epigenetic editing, to eventually make a difference for the currently incurable brain disorders.
Collapse
Affiliation(s)
- Luis A González Molina
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Federica Sarno
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Singh R, Rathore AS, Dilnashin H, Keshri PK, Gupta NK, Prakash SAS, Zahra W, Singh S, Singh SP. HAT and HDAC: Enzyme with Contradictory Action in Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9110-9124. [PMID: 38587698 DOI: 10.1007/s12035-024-04115-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
In view of the increasing risk of neurodegenerative diseases, epigenetics plays a fundamental role in the field of neuroscience. Several modifications have been studied including DNA methylation, histone acetylation, histone phosphorylation, etc. Histone acetylation and deacetylation regulate gene expression, and the regular activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) provides regulatory stages for gene expression and cell cycle. Imbalanced homeostasis in these enzymes causes a detrimental effect on neurophysiological function. Intriguingly, epigenetic remodelling via histone acetylation in certain brain areas has been found to play a key role in the neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. It has been demonstrated that a number of HATs have a role in crucial brain processes such regulating neuronal plasticity and memory formation. The most recent therapeutic methods involve the use of small molecules known as histone deacetylase (HDAC) inhibitors that antagonize HDAC activity thereby increase acetylation levels in order to prevent the loss of HAT function in neurodegenerative disorders. The target specificity of the HDAC inhibitors now in use raises concerns about their applicability, despite the fact that this strategy has demonstrated promising therapeutic outcomes. The aim of this review is to summarize the cross-linking between histone modification and its regulation in the pathogenesis of neurological disorders. Furthermore, these findings also support the notion of new pharmacotherapies that target particular areas of the brain using histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Nitesh Kumar Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Singh Ankit Satya Prakash
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India.
| |
Collapse
|
3
|
Jin M, Shi R, Gao D, Wang B, Li N, Li X, Sik A, Liu K, Zhang X. ErbB2 pY -1248 as a predictive biomarker for Parkinson's disease based on research with RPPA technology and in vivo verification. CNS Neurosci Ther 2024; 30:e14407. [PMID: 37564024 PMCID: PMC10848095 DOI: 10.1111/cns.14407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
AIMS This study aims to reveal a promising biomarker for Parkinson's disease (PD) based on research with reverse phase protein array (RPPA) technology for the first time and in vivo verification, which gains time for early intervention in PD, thus increasing the effectiveness of treatment and reducing disease morbidity. METHODS AND RESULTS We employed RPPA technology which can assess both total and post-translationally modified proteins to identify biomarker candidates of PD in a cellular PD model. As a result, the phosphorylation (pY-1248) of the epidermal growth factor receptor (EGFR) ErbB2 is a promising biomarker candidate for PD. In addition, lapatinib, an ErbB2 tyrosine kinase inhibitor, was used to verify this PD biomarker candidate in vivo. We found that lapatinib-attenuated dopaminergic neuron loss and PD-like behavior in the zebrafish PD model. Accordingly, the expression of ErbB2pY-1248 significantly increased in the MPTP-induced mouse PD model. Our results suggest that ErbB2pY-1248 is a predictive biomarker for PD. CONCLUSIONS In this study, we found that ErbB2pY-1248 is a predictive biomarker of PD by using RPPA technology and in vivo verification. It offers a new perspective on PD diagnosing and treatment, which will be essential in identifying individuals at risk of PD. In addition, this study provides new ideas for digging into biomarkers of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
- School of PsychologyNorth China University of Science and TechnologyTang'shanChina
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Xia Li
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd.Ji'nanChina
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical SchoolUniversity of PecsPécsHungary
- Institute of Clinical Sciences, Medical SchoolUniversity of BirminghamBirminghamUK
- Institute of Physiology, Medical SchoolUniversity of PecsPécsHungary
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Xiujun Zhang
- School of PsychologyNorth China University of Science and TechnologyTang'shanChina
| |
Collapse
|
4
|
Cheslow L, Byrne M, Kopenhaver JS, Iacovitti L, Smeyne RJ, Snook AE, Waldman SA. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults. RESEARCH SQUARE 2023:rs.3.rs-3416338. [PMID: 37886524 PMCID: PMC10602097 DOI: 10.21203/rs.3.rs-3416338/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases, and their second messengers cyclic (c)GMP, support mitochondrial function, protecting against ROS and promoting cell survival in a number of tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of neurodegeneration. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in nigral DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica S. Kopenhaver
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard J. Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E. Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Bottero V, Alrafati F, Santiago JA, Potashkin JA. Transcriptomic and Network Meta-Analysis of Frontotemporal Dementias. Front Mol Neurosci 2021; 14:747798. [PMID: 34720873 PMCID: PMC8554122 DOI: 10.3389/fnmol.2021.747798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD), also known as frontotemporal dementia (FTD), results in a progressive decline in executive function, leading to behavioral changes, speech problems, and movement disorders. FTD is the second most common cause of young-onset dementia affecting approximately 50–60,000 Americans. FTD exists in familial and sporadic forms, with GRN progranulin and C9orf72 mutations being the most common causes. In this study, we compared the sporadic and familial transcriptome within the cerebellum, frontal cortex, hippocampus, and Brodmann’s area 8 of patients with FTD to determine genes and pathways involved in the disease process. Most dysregulated genes expression occurred in the frontal cortex and Brodmann’s area 8 for genetic and sporadic forms of FTD, respectively. A meta-analysis revealed 50 genes and 95 genes are dysregulated in at least three brain regions in patients with familial mutations and sporadic FTD patients, respectively. Familial FTD genes centered on the Wnt signaling pathway, whereas genes associated with the sporadic form of FTD centered on MAPK signaling. The results reveal the similarities and differences between sporadic and familial FTD. In addition, valproic acid and additional therapeutic agents may be beneficial in treating patients with FTD.
Collapse
Affiliation(s)
- Virginie Bottero
- Center for Neurodegenerative Diseases and Therapeutics, Chicago Medical School, Discipline of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Fahed Alrafati
- Center for Neurodegenerative Diseases and Therapeutics, Chicago Medical School, Discipline of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Judith A Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Chicago Medical School, Discipline of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
6
|
Huang JB, Hsu SP, Pan HY, Chen SD, Chen SF, Lin TK, Liu XP, Li JH, Chen NC, Liou CW, Hsu CY, Chuang HY, Chuang YC. Peroxisome Proliferator-Activated Receptor γ Coactivator 1α Activates Vascular Endothelial Growth Factor That Protects Against Neuronal Cell Death Following Status Epilepticus through PI3K/AKT and MEK/ERK Signaling. Int J Mol Sci 2020; 21:ijms21197247. [PMID: 33008083 PMCID: PMC7583914 DOI: 10.3390/ijms21197247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Status epilepticus may cause molecular and cellular events, leading to hippocampal neuronal cell death. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) is an important regulator of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2), also known as fetal liver kinase receptor 1 (Flk-1). Resveratrol is an activator of PGC-1α. It has been suggested to provide neuroprotective effects in epilepsy, stroke, and neurodegenerative diseases. In the present study, we used microinjection of kainic acid into the left hippocampal CA3 region in Sprague Dawley rats to induce bilateral prolonged seizure activity. Upregulating the PGC-1α pathway will increase VEGF/VEGFR2 (Flk-1) signaling and further activate some survival signaling that includes the mitogen activated protein kinase kinase (MEK)/mitogen activated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways and offer neuroprotection as a consequence of apoptosis in the hippocampal neurons following status epilepticus. Otherwise, downregulation of PGC-1α by siRNA against pgc-1α will inhibit VEGF/VEGFR2 (Flk-1) signaling and suppress pro-survival PI3K/AKT and MEK/ERK pathways that are also accompanied by hippocampal CA3 neuronal cell apoptosis. These results may indicate that the PGC-1α induced VEGF/VEGFR2 pathway may trigger the neuronal survival signaling, and the PI3K/AKT and MEK/ERK signaling pathways. Thus, the axis of PGC-1α/VEGF/VEGFR2 (Flk-1) and the triggering of downstream PI3K/AKT and MEK/ERK signaling could be considered an endogenous neuroprotective effect against apoptosis in the hippocampus following status epilepticus.
Collapse
Affiliation(s)
- Jyun-Bin Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (J.-B.H.); (H.-Y.P.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
| | - Shih-Pin Hsu
- Department of Neurology, E-Da Hospital/School of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (J.-B.H.); (H.-Y.P.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
| | - Shang-Der Chen
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.)
| | - Shu-Fang Chen
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Tsu-Kung Lin
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Xuan-Ping Liu
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.)
| | - Jie-Hau Li
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.)
| | - Nai-Ching Chen
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chung-Yao Hsu
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital and School of Public Health, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yao-Chung Chuang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (S.-D.C.); (S.-F.C.); (T.-K.L.); (N.-C.C.); (C.-W.L.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.)
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Valproic acid interactions with the NavMs voltage-gated sodium channel. Proc Natl Acad Sci U S A 2019; 116:26549-26554. [PMID: 31822620 DOI: 10.1073/pnas.1909696116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Valproic acid (VPA) is an anticonvulsant drug that is also used to treat migraines and bipolar disorder. Its proposed biological targets include human voltage-gated sodium channels, among other membrane proteins. We used the prokaryotic NavMs sodium channel, which has been shown to be a good exemplar for drug binding to human sodium channels, to examine the structural and functional interactions of VPA. Thermal melt synchrotron radiation circular dichroism spectroscopic binding studies of the full-length NavMs channel (which includes both pore and voltage sensor domains), and a pore-only construct, undertaken in the presence and absence of VPA, indicated that the drug binds to and destabilizes the channel, but not the pore-only construct. This is in contrast to other antiepileptic compounds that have previously been shown to bind in the central hydrophobic core of the pore region of the channel, and that tend to increase the thermal stability of both pore-only constructs and full-length channels. Molecular docking studies also indicated that the VPA binding site is associated with the voltage sensor, rather than the hydrophobic cavity of the pore domain. Electrophysiological studies show that VPA influences the block and inactivation rates of the NavMs channel, although with lower efficacy than classical channel-blocking compounds. It thus appears that, while VPA is capable of binding to these voltage-gated sodium channels, it has a very different mode and site of action than other anticonvulsant compounds.
Collapse
|
8
|
Li X, Jia P, Huang Z, Liu S, Miao J, Guo Y, Wu N, Jia D. Lycopene protects against myocardial ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Drug Des Devel Ther 2019; 13:2331-2342. [PMID: 31371925 PMCID: PMC6635826 DOI: 10.2147/dddt.s194753] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/22/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Mitochondria permeability transition pore (MPTP) is an important therapeutic target for myocardial ischemia-reperfusion injury (MIRI). Lycopene (LP) is a potent antioxidant extracted from the mature fruits of plants and has been reported to protect against MIRI; however, its mechanism of action has yet to be completely elucidated. The present study aimed to investigate the role of MPTP in the cardioprotection of LP. METHODS H9c2 cells were pretreated with LP for 12 hrs and were subjected to 12-hr hypoxia/1-hr re-oxygenation, and cell viability was measured by a Cell Counting Kit-8 (CCK-8) assay. Male rats were subsequently intraperitoneally injected with LP for 5 consecutive days. At 24 hrs following the final injection, the rat hearts were isolated and subjected to 30-min ischemia/120-min reperfusion using Langendorff apparatus. The myocardial infarct size was measured by a TTC stain. Opening of the MPTP was induced by CaCl2 and measured by colorimetry. The change in mitochondrial transmembrane potential (ΔΨm) was observed under a fluorescence microscope. Apoptosis was measured by flow cytometry and a TUNEL stain, and the expression of apoptosis-related proteins was detected by Western blotting. RESULTS LP pretreatment significantly increased cell viability, reduced myocardial infarct size and decreased the apoptosis rate. In addition, opening and the decrease of ΔΨm were attenuated by LP and the expressions of cytochrome c, APAF-1, cleaved caspase-9 and cleaved caspase-3 were also decreased by LP. However, these beneficial effects on MIRI were abrogated by the MPTP opener (atractyloside). Furthermore, LP treatment markedly increased Bcl-2 expression, decreased Bax expression and the Bax/Bcl-2 ratio. CONCLUSION The results of the present study demonstrated that LP protects against MIRI by inhibiting MPTP opening, partly through the modulation of Bax and Bcl-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nan Wu
-
The Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | | |
Collapse
|
9
|
Valvassori SS, Gava FF, Dal-Pont GC, Simões HL, Damiani-Neves M, Andersen ML, Boeck CR, Quevedo J. Effects of lithium and valproate on ERK/JNK signaling pathway in an animal model of mania induced by amphetamine. Heliyon 2019; 5:e01541. [PMID: 31193305 PMCID: PMC6525279 DOI: 10.1016/j.heliyon.2019.e01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder, characterized by recurrent mood episodes of depression and mania. Some studies have indicated that there are ERK and JNK pathways alterations in the brain from bipolar patients. The animal model of mania induced by dextroamphetamine (d-AMPH) has been considered an excellent model to study intracellular alterations related to BD. The present study aimed to evaluate the effects of lithium (Li) and valproate (VPA) on the behavioral and ERK1/2/JNK1/2 signaling pathway in an animal model of mania induced by d-AMPH. Wistar rats were first given d-AMPH or saline (Sal) for 14 days, and then, between the 8th and 14th days, the rats were treated with Li, VPA, or Sal. The open-field test was used to evaluate the locomotion and exploration behaviors of rats. The levels of phosphorylated ERK1/2 and JNK1/2 were assessed in the hippocampus and frontal cortex of the rats. Li and VPA reversed the increased of locomotion and exploration induced by d-AMPH. The treatment with VPA or AMPH per se decreased the levels of pERK1 in the hippocampus. The treatment with VPA in the animals submitted to the administration of d-AMPH decreased the levels of ERK1, JNK-1, and JNK-2 phosphorylated in the hippocampus of the animals. The treatment with Li decreased the JNK-1 phosphorylated in the hippocampus of the animals submitted to the animal model of mania induced by d-AMPH. Although the association of VPA plus amphetamine alters some proteins involved in the JNK pathway in the hippocampus, these alterations were very random and seemed that were not related to the d-AMPH-induced manic-like behavior. These results suggest that the manic-like effects induced by d-AMPH and the antimanic effects of mood stabilizers, Li and VPA, are not related to the alteration on ERK1/2 and JNK1/2 pathways.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henio Leonardo Simões
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Marcela Damiani-Neves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monica Levy Andersen
- Master's Degree in Health and Life Sciences, Postgraduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | | | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
10
|
Pariyar R, Lamichhane R, Jung HJ, Kim SY, Seo J. Sulfuretin Attenuates MPP⁺-Induced Neurotoxicity through Akt/GSK3β and ERK Signaling Pathways. Int J Mol Sci 2017; 18:ijms18122753. [PMID: 29257079 PMCID: PMC5751352 DOI: 10.3390/ijms18122753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. It is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress and mitochondrial dysfunction contribute to the loss of dopaminergic neurons in PD. Sulfuretin is a potent antioxidant that is reported to be beneficial in the treatment of neurodegenerative diseases. In this study, we examined the protective effect of sulfuretin against 1-methyl-4-phenyl pyridinium (MPP⁺)-induced cell model of PD in SH-SY5Y cells and the underlying molecular mechanisms. Sulfuretin significantly decreased MPP⁺-induced apoptotic cell death, accompanied by a reduction in caspase 3 activity and polyADP-ribose polymerase (PARP) cleavage. Furthermore, it attenuated MPP⁺-induced production of intracellular reactive oxygen species (ROS) and disruption of mitochondrial membrane potential (MMP). Consistently, sulfuretin decreased p53 expression and the Bax/Bcl-2 ratio. Moreover, sulfuretin significantly increased the phosphorylation of Akt, GSK3β, and ERK. Pharmacological inhibitors of PI3K/Akt and ERK abolished the cytoprotective effects of sulfuretin against MPP⁺. An inhibitor of GSK3β mimicked sulfuretin-induced protection against MPP⁺. Taken together, these results suggest that sulfuretin significantly attenuates MPP⁺-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways in SH-SY5Y cells. Our findings suggest that sulfuretin might be one of the potential candidates for the treatment of PD.
Collapse
Affiliation(s)
- Ramesh Pariyar
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea.
| | - Ramakanta Lamichhane
- Deptartment of Oriental Pharmacy, & Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Hyun Ju Jung
- Deptartment of Oriental Pharmacy, & Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Sung Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Jungwon Seo
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea.
| |
Collapse
|