1
|
Liu C, Du J, Yang J, Li J, Zhou T, Yu J, Wang X, Lin J, Liang Y, Shi R, Luo R, Shen X, Wang Y, Zhang L, Shu Z. Research on the mechanism of buyang huanwu decoction in the amelioration of age-associated memory impairment based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118819. [PMID: 39303964 DOI: 10.1016/j.jep.2024.118819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brain aging can promote neuronal damage, contributing to aging-related diseases like memory dysfunction. Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula known for tonifying qi and activating blood circulation, shows neuroprotective properties. Despite this, the specific mechanism by which BYHWD improves age-associated memory impairment (AAMI) has not been explored in existing literature. AIM OF THE STUDY This study aimed to investigate the mechanism of BYHWD in the improvement of AAMI based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". MATERIALS AND METHODS Firstly, D-galactose was performed to induce a rat model of AAMI. Learning and memory deficits was assessed by the Morris water maze test. H&E and Nissl staining were used to observe the pathological changes in neurons in the hippocampus of rats. Meanwhile, the levels of pro-inflammatory cytokines and the activation of antioxidant enzymes in rat serum were measured using ELISA. Finally, an integrated pharmacological approach was applied to explore the potential mechanism of BYHWD in improving AAMI. RESULTS Our results indicated that BYHWD significantly mitigated the pathological structure of the hippocampus, reversed the levels of IL-6, TNF-α, GSH, and CAT in the serum, and improved learning and memory in aging rats. Transcriptomics combined with network pharmacology showed that energy metabolism and the inflammatory response were the key biological pathways for BYHWD to ameliorate AAMI. Integrative analysis of the microbiome and metabolomics revealed that BYHWD has the potential to restore the balance of abundance between probiotics and harmful bacteria, and ameliorate the reprogramming of energy metabolism caused by aging in the brain. The co-occurrence network analysis demonstrated that a strong correlation between the treatment of AAMI and the stability of intestinal microecology, host metabolism, and immune network. CONCLUSION The findings of this study collectively support the notion that BYHWD has a superior therapeutic effect in an AAMI rat model. The mechanism involves regulating the "intestinal microecology-metabolism-immune function co-occurrence network" system to restore the composition of gut microbiota and metabolites. This further improves the metabolic phenotype of brain tissue and maintains the homeostasis of central nervous system's immunity, leading to an improvement in AAMI. Consequently, this study offers a unique perspective on the prevention and treatment of AAMI. And, BYHWD is also considered to be a promising preclinical treatment for improving AAMI.
Collapse
Affiliation(s)
- Caiyan Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieyong Du
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaming Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongfeng Luo
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
2
|
Li L, Shi C, Dong F, Xu G, Lei M, Zhang F. Targeting pyroptosis to treat ischemic stroke: From molecular pathways to treatment strategy. Int Immunopharmacol 2024; 133:112168. [PMID: 38688133 DOI: 10.1016/j.intimp.2024.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Ischemic stroke is the primary reason for human disability and death, but the available treatment options are limited. Hence, it is imperative to explore novel and efficient therapies. In recent years, pyroptosis (a pro-inflammatory cell death characterized by inflammation) has emerged as an important pathological mechanism in ischemic stroke that can cause cell death through plasma membrane rupture and release of inflammatory cytokines. Pyroptosis is closely associated with inflammation, which exacerbates the inflammatory response in ischemic stroke. The level of inflammasomes, GSDMD, Caspases, and inflammatory factors is increased after ischemic stroke, exacerbating brain injury by mediating pyroptosis. Hence, inhibition of pyroptosis can be a therapeutic strategy for ischemic stroke. In this review, we have summarized the relationship between pyroptosis and ischemic stroke, as well as a series of treatments to attenuate pyroptosis, intending to provide insights for new therapeutic targets on ischemic stroke.
Collapse
Affiliation(s)
- Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Chonglin Shi
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
3
|
Bing Q, Yongrui B, Shuai W, Tianjiao L, Xiansheng M. Rapid analysis of components in Qizhiweitong tablets and plasma after oral administration in rats by UPLC-Q-TOF-MS/MS based on self-developed database. Biomed Chromatogr 2022; 36:e5460. [PMID: 35903874 DOI: 10.1002/bmc.5460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022]
Abstract
Qizhiweitong is a famous traditional Chinese prescription medicine. It has been used to treat various stomach disorders, such as functional dyspepsia, chronic gastritis, and intestinal stress syndrome for a long time and gives favorable therapeutic effects in clinical settings. However, its chemical composition and possible bioactive components are not completely known. In the present study, we used ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) and qualitatively analyzed the chemical composition of Qizhiweitong tablet extract and the absorbed prototype constituents along with corresponding metabolites in rat plasma following oral administration of Qizhiweitong tablet on the basis of our self-developed component database that was established accurately and rapidly. We detected a total of 119 compounds and 61 xenobiotics in the Qizhiweitong tablet, which included 32 prototypes and 28 metabolites. The results of the present study laid a solid foundation for quality marker screening and integrative pharmacology-based study on the Qizhiweitong tablet.
Collapse
Affiliation(s)
- Qi Bing
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Bao Yongrui
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wang Shuai
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China.,Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian, China
| | - Li Tianjiao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China.,Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian, China
| | - Meng Xiansheng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China.,Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian, China
| |
Collapse
|
5
|
Yang S, Zhang X, Dong Y, Sun G, Jiang A, Li Y. Cleavage rules of mass spectrometry fragments and rapid identification of chemical components of Radix Paeoniae Alba using UHPLC-Q-TOF-MS. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:836-849. [PMID: 33503685 DOI: 10.1002/pca.3029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Radix Paeoniae Alba (RPA) presents several pharmacological effects, including analgesia, liver protection, and toxicity reduction. RPA consists mostly of monoterpenes and their glycosides, tannins, flavonoids, and organic acids, with monoterpenes being the main active pharmaceutical ingredients. OBJECTIVE To establish an effective method for rapid classification and identification of the main monoterpenes, flavonoids, and organic acids in RPA. METHODS We used ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and data post-processing technology to rapidly classify and identify the monoterpenoids, flavonoids, and organic acids in RPA. We also summarised the diagnostic product ions and neutral losses of monoterpenoids, flavonoids, and organic acids in RPA reported in the literature. RESULTS We identified 24 components, namely 18 monoterpenoids, one flavonoid, and five organic acids. CONCLUSION In this study, we analysed the chemically active pharmaceutical ingredients and assessed the quality of RPA. In addition, we demonstrated that UHPLC-Q-TOF-MS can be used to qualitatively classify and identify the variety of chemical components of traditional Chinese medicines (TCMs) to a certain extent. Moreover, we confirmed that mass spectrometry can be used to identify the components of TCMs.
Collapse
Affiliation(s)
- Shenshen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyue Zhang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqian Dong
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guijiang Sun
- Department of Kidney Disease and Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Aili Jiang
- Department of Kidney Disease and Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yubo Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Gualou Guizhi Granule Suppresses LPS-Induced Inflammatory Response of Microglia and Protects against Microglia-Mediated Neurotoxicity in HT-22 via Akt/NF- κB Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9957459. [PMID: 34335849 PMCID: PMC8321734 DOI: 10.1155/2021/9957459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Neuroinflammation plays a crucial part in the commencement and advancement of ischemic stroke. Gualou Guizhi granule (GLGZG) is known to well exhibit neuroprotective effect, but it is not known whether GLGZG can regulate the inflammatory process at the cellular level in BV2 microglia cells and protect against microglia-mediated neurotoxicity in neurons. Herein, we aimed to investigate the anti-inflammatory effects of GLGZG on BV2 microglia cells and protection against microglia-mediated neurotoxicity in neurons. Methods. The cell model of neuroinflammation was constructed by lipopolysaccharide (LPS) to observe the effect of GLGZG in the presence or absence of GLGZG. The production of nitric oxide (NO), inflammatory mediators, was detected. Moreover, potential mechanisms associated with the anti-inflammatory effect, such as inhibition of microglial activation and nuclear factor kappa B (NF-κB), were also investigated. In addition, to prove whether GLGZG protects against microglia-mediated neurotoxicity, neuronal HT-22 cells were cultured in the conditioned medium. And cell survivability and neuronal apoptosis of HT-22 were evaluated. Results. It was found that a main regulator of inflammation, NO, is suppressed by GLGZG in BV2 microglial cells. Moreover, GLGZG dose dependently decreased the mRNA and protein levels of inducible NO synthase (iNOS) in LPS-stimulated BV2 cells. Additionally, GLGZG inhibited the expression and secretion of proinflammatory cytokines in BV2 microglial cells. Also, GLGZG inhibited LPS-activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in BV2 microglial cells at the intracellular level. GLGZG significantly affected Akt phosphorylation: phosphorylated forms of Akt increased. To check whether GLGZG protects against microglia-mediated neurotoxicity, neuronal HT-22 cells were incubated in the conditioned medium. GLGZG showed a neuroprotective effect by promoting cell survivability and suppressing neuronal apoptosis. Conclusions. GLGZG exerted its potential effects on suppressing inflammatory responses in LPS-induced BV2 cells by regulating NF-κB and Akt pathways. In addition, GLGZG could protect against microglia-mediated neurotoxicity in HT-22.
Collapse
|
9
|
Liu Y, Chi S, Wang W, Su L, Liu B. Simultaneous Determination of Seven Components in Rat Plasma by the UPLC-MS/MS Method and Application of Pharmacokinetic Studies to SimiaoYong'an Decoction. Molecules 2017; 22:molecules22111937. [PMID: 29120359 PMCID: PMC6150365 DOI: 10.3390/molecules22111937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022] Open
Abstract
SimiaoYong'an Decoction (SYD) is a classical traditional Chinese prescription that is used for the treatment of gangrene, heat-clearing, detoxification and pain alleviation. We developed a sensitive ultra-performance liquid chromatography-tandem mass spectrum (UPLC-MS/MS) method for the simultaneous determination of seven major active ingredients of SYD extract (i.e., harpagide, chlorogenic acid, sweroside, loganin, liquiritin, angoroside C and harpagoside) in rat plasma. The preliminary steps in the plasma analysis were the addition of an internal standard such as linarin, followed by protein precipitation with methanol. Separation of the active ingredients was performed on an ACQUITY UPLC® BEH C18 column (100 mm × 2.1 mm, 1.7 μm) at a flow rate of 0.2 mL/min with methanol/water 0.1% formic acid aqueous (V/V) as the mobile phase. Detection was performed on a triple quadrupole tandem MS (QqQ-MS) via negative ion electrospray ionization in multiple reactions monitoring (MRM) mode. All calibration curves showed good linearity (r > 0.99) over the concentration range with a low limit of quantification between 0.029 and 5.813 ng/mL. Precision was evaluated by intra-day and inter-day assays, and the percentages of the RSD were all within 8.1%. The extraction efficiency and matrix effect were 80.6-113.6% and 82.9-99.5%, respectively. The validated method was successfully applied to a pharmacokinetic study in rats after oral administration of SYD extract and the corresponding single and combined traditional Chinese medicines (TCMs). The pharmacokinetic properties of the seven ingredients showed dynamic changes due to counteraction among the different coexisting components. The established approach has proven useful in the study of the active constituents in a traditional Chinese prescription.
Collapse
Affiliation(s)
- Yuanyan Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Beijing Central South Road, Chaoyang District, Beijing 100102, China.
| | - Sensen Chi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Beijing Central South Road, Chaoyang District, Beijing 100102, China.
| | - Weihua Wang
- Chemical Metrology & Analytical Science Division, National Institute of Metrology, P.R., No. 18, EastRoad of the Third North Circle Ring, Chaoyang District, Beijing 100013, China.
| | - Lei Su
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Beijing Central South Road, Chaoyang District, Beijing 100102, China.
| | - Bin Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Beijing Central South Road, Chaoyang District, Beijing 100102, China.
| |
Collapse
|