1
|
Bonnet C, Poulin-Charronnat B, Michel-Colent C. Aftereffects of visuomanual prism adaptation in auditory modality: Review and perspectives. Neurosci Biobehav Rev 2024; 164:105814. [PMID: 39032842 DOI: 10.1016/j.neubiorev.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Visuomanual prism adaptation (PA), which consists of pointing to visual targets while wearing prisms that shift the visual field, is one of the oldest experimental paradigms used to investigate sensorimotor plasticity. Since the 2000's, a growing scientific interest emerged for the expansion of PA to cognitive functions in several sensory modalities. The present work focused on the aftereffects of PA within the auditory modality. Recent studies showed changes in mental representation of auditory frequencies and a shift of divided auditory attention following PA. Moreover, one study demonstrated benefits of PA in a patient suffering from tinnitus. According to these results, we tried to shed light on the following question: How could this be possible to modulate audition by inducing sensorimotor plasticity with glasses? Based on the literature, we suggest a bottom-up attentional mechanism involving cerebellar, parietal, and temporal structures to explain crossmodal aftereffects of PA. This review opens promising new avenues of research about aftereffects of PA in audition and its implication in the therapeutic field of auditory troubles.
Collapse
Affiliation(s)
- Clémence Bonnet
- LEAD - CNRS UMR5022, Université de Bourgogne, Pôle AAFE, 11 Esplanade Erasme, Dijon 21000, France.
| | | | - Carine Michel-Colent
- CAPS, Inserm U1093, Université de Bourgogne, UFR des Sciences du Sport, Dijon F-21000, France
| |
Collapse
|
2
|
Scheffels JF, Lipinsky C, Korabova S, Eling P, Kastrup A, Hildebrandt H. The influence of clinical characteristics on prism adaptation training in visuospatial neglect: A post-hoc analysis of a randomized controlled trial. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:678-688. [PMID: 35416101 DOI: 10.1080/23279095.2022.2061353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Previous studies indicate that the effect of prism adaptation training (PAT) on unilateral neglect may depend on clinical characteristics. In this explorative work, we re-analyzed data from a previously conducted randomized controlled trial (N = 23) to investigate whether age, etiology, severity of motor impairments, and visual field deficits affect the efficacy of PAT. Additionally, we reviewed PAT studies that reported lesion maps and distinguished responders from non-responders. We transferred these maps into a common standard brain and added data from 12 patients from our study. We found patients suffering from subarachnoid bleeding appeared to show stronger functional recovery than those with intracranial hemorrhage or cortical infarction. Furthermore, patients with visual field deficits and those with more severe contralateral motor impairments had larger after-effect sizes but did not differ in treatment effects. In addition, patients with parietal lesions showed reduced recovery, whereas patients with lesions in the basal ganglia recovered better. We conclude that PAT (in its current form) is effective when fronto-subcortical areas are involved but it may not be the best choice when parietal regions are affected. Overall, the present work adds to the understanding on the effects of clinical characteristics on PAT.
Collapse
Affiliation(s)
- J F Scheffels
- Department of Neurology, Klinikum Bremen-Ost, Bremen, Germany
- Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - C Lipinsky
- Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands
| | - S Korabova
- Department of Neurology, Klinikum Bremen-Ost, Bremen, Germany
- Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - P Eling
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - A Kastrup
- Department of Neurology, Klinikum Bremen-Mitte, Bremen, Germany
| | - H Hildebrandt
- Department of Neurology, Klinikum Bremen-Ost, Bremen, Germany
- Department of Psychology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Wilf M, Dupuis C, Nardo D, Huber D, Sander S, Al-Kaar J, Haroud M, Perrin H, Fornari E, Crottaz-Herbette S, Serino A. Virtual reality-based sensorimotor adaptation shapes subsequent spontaneous and naturalistic stimulus-driven brain activity. Cereb Cortex 2022; 33:5163-5180. [PMID: 36288926 PMCID: PMC10152055 DOI: 10.1093/cercor/bhac407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Our everyday life summons numerous novel sensorimotor experiences, to which our brain needs to adapt in order to function properly. However, tracking plasticity of naturalistic behavior and associated brain modulations is challenging. Here, we tackled this question implementing a prism adaptation-like training in virtual reality (VRPA) in combination with functional neuroimaging. Three groups of healthy participants (N = 45) underwent VRPA (with a shift either to the left/right side, or with no shift), and performed functional magnetic resonance imaging (fMRI) sessions before and after training. To capture modulations in free-flowing, task-free brain activity, the fMRI sessions included resting-state and free-viewing of naturalistic videos. We found significant decreases in spontaneous functional connectivity between attentional and default mode (DMN)/fronto-parietal networks, only for the adaptation groups, more pronouncedly in the hemisphere contralateral to the induced shift. In addition, VRPA was found to bias visual responses to naturalistic videos: Following rightward adaptation, we found upregulation of visual response in an area in the parieto-occipital sulcus (POS) only in the right hemisphere. Notably, the extent of POS upregulation correlated with the size of the VRPA-induced after-effect measured in behavioral tests. This study demonstrates that a brief VRPA exposure can change large-scale cortical connectivity and correspondingly bias visual responses to naturalistic sensory inputs.
Collapse
Affiliation(s)
- Meytal Wilf
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland.,Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Celine Dupuis
- MindMaze SA, Chemin de Roseneck 5, 1006 Lausanne, Switzerland
| | - Davide Nardo
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge CB2 7EF, United Kingdom.,Department of Education, University of Roma Tre, Rome, Italy
| | - Diana Huber
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Sibilla Sander
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Joud Al-Kaar
- Neuropsychology and Neurorehabilitation Service, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Meriem Haroud
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland.,Neuropsychology and Neurorehabilitation Service, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Henri Perrin
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Eleonora Fornari
- Biomedical Imaging Center (CIBM), Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- MindMaze SA, Chemin de Roseneck 5, 1006 Lausanne, Switzerland.,Neuropsychology and Neurorehabilitation Service, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland.,MindMaze SA, Chemin de Roseneck 5, 1006 Lausanne, Switzerland
| |
Collapse
|
4
|
Farron N, Clarke S, Crottaz-Herbette S. Does hand modulate the reshaping of the attentional system during rightward prism adaptation? An fMRI study. Front Psychol 2022; 13:909815. [PMID: 35967619 PMCID: PMC9363778 DOI: 10.3389/fpsyg.2022.909815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptation to right-deviating prisms (R-PA), that is, learning to point with the right hand to targets perceived through prisms, has been shown to change spatial topography within the inferior parietal lobule (IPL) by increasing responses to left, central, and right targets on the left hemisphere and decreasing responses to right and central targets on the right hemisphere. As pointed out previously, this corresponds to a switch of the dominance of the ventral attentional network from the right to the left hemisphere. Since the encoding of hand movements in pointing paradigms is side-dependent, the choice of right vs. left hand for pointing during R-PA may influence the visuomotor adaptation process and hence the reshaping of the attentional system. We have tested this hypothesis in normal subjects by comparing activation patterns to visual targets in left, central, and right fields elicited before and after adaptation to rightward-deviating prisms using the right hand (RWRH) with those in two control groups. The first control group underwent adaptation to rightward-deviating prisms using the left hand, whereas the second control group underwent adaptation to leftward-deviating prisms using the right hand. The present study confirmed the previously described enhancement of left and central visual field representation within left IPL following R-PA. It further showed that the use of right vs. left hand during adaptation modulates this enhancement in some but not all parts of the left IPL. Interestingly, in some clusters identified in this study, L-PA with right hand mimics partially the effect of R-PA by enhancing activation elicited by left stimuli in the left IPL and by decreasing activation elicited by right stimuli in the right IPL. Thus, the use of right vs. left hand modulates the R-PA-induced reshaping of the ventral attentional system. Whether the choice of hand during R-PA affects also the reshaping of the dorsal attentional system remains to be determined as well as possible clinical applications of this approach. Depending on the patients' conditions, using the right or the left hand during PA might potentiate the beneficial effects of this intervention.
Collapse
|
5
|
Clarke S, Farron N, Crottaz-Herbette S. Choosing Sides: Impact of Prismatic Adaptation on the Lateralization of the Attentional System. Front Psychol 2022; 13:909686. [PMID: 35814089 PMCID: PMC9260393 DOI: 10.3389/fpsyg.2022.909686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Seminal studies revealed differences between the effect of adaptation to left- vs. right-deviating prisms (L-PA, R-PA) in normal subjects. Whereas L-PA leads to neglect-like shift in attention, demonstrated in numerous visuo-spatial and cognitive tasks, R-PA has only minor effects in specific aspects of a few tasks. The paucity of R-PA effects in normal subjects contrasts with the striking alleviation of neglect symptoms in patients with right hemispheric lesions. Current evidence from activation studies in normal subjects highlights the contribution of regions involved in visuo-motor control during prism exposure and a reorganization of spatial representations within the ventral attentional network (VAN) after the adaptation. The latter depends on the orientation of prisms used. R-PA leads to enhancement of the ipsilateral visual and auditory space within the left inferior parietal lobule (IPL), switching thus the dominance of VAN from the right to the left hemisphere. L-PA leads to enhancement of the ipsilateral space in right IPL, emphasizing thus the right hemispheric dominance of VAN. Similar reshaping has been demonstrated in patients. We propose here a model, which offers a parsimonious explanation of the effect of L-PA and R-PA both in normal subjects and in patients with hemispheric lesions. The model posits that prismatic adaptation induces instability in the synaptic organization of the visuo-motor system, which spreads to the VAN. The effect is lateralized, depending on the side of prism deviation. Successful pointing with prisms implies reaching into the space contralateral, and not ipsilateral, to the direction of prism deviation. Thus, in the hemisphere contralateral to prism deviation, reach-related neural activity decreases, leading to instability of the synaptic organization, which induces a reshuffling of spatial representations in IPL. Although reshuffled spatial representations in IPL may be functionally relevant, they are most likely less efficient than regular representations and may thus cause partial dysfunction. The former explains, e.g., the alleviation of neglect symptoms after R-PA in patients with right hemispheric lesions, the latter the occurrence of neglect-like symptoms in normal subjects after L-PA. Thus, opting for R- vs. L-PA means choosing the side of major IPL reshuffling, which leads to its partial dysfunction in normal subjects and to recruitment of alternative or enhanced spatial representations in patients with hemispheric lesions.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
6
|
Bourgeois A, Schmid A, Turri F, Schnider A, Ptak R. Visual but Not Auditory-Verbal Feedback Induces Aftereffects Following Adaptation to Virtual Prisms. Front Neurosci 2021; 15:658353. [PMID: 34764847 PMCID: PMC8575682 DOI: 10.3389/fnins.2021.658353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Visuo-motor adaptation with optical prisms that displace the visual scene (prism adaptation, PA) has been widely used to study visuo-motor plasticity in healthy individuals and to decrease the lateralized bias of brain-damaged patients suffering from spatial neglect. Several factors may influence PA aftereffects, such as the degree of optical deviation (generally measured in dioptres of wedge prisms) or the direction of the prismatic shift (leftward vs. rightward). However, the mechanisms through which aftereffects of adaptation in healthy individuals and in neglect affect performance in tasks probing spatial cognition remain controversial. For example, some studies have reported positive effects of PA on auditory neglect, while other studies failed to obtain any changes of performance even in the visual modality. We here tested a new adaptation method in virtual reality to evaluate how sensory parameters influence PA aftereffects. Visual vs. auditory-verbal feedback of optical deviations were contrasted to assess whether rightward deviations influence manual and perceptual judgments in healthy individuals. Our results revealed that altered visual, but not altered auditory-verbal feedback induces aftereffects following adaptation to virtual prisms after 30-degrees of deviation. These findings refine current models of the mechanisms underlying the cognitive effects of virtual PA in emphasizing the importance of visual vs. auditory-verbal feedback during the adaptation phase on visuospatial judgments. Our study also specifies parameters which influence virtual PA and its aftereffect, such as the sensory modality used for the feedback.
Collapse
Affiliation(s)
- Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Audrey Schmid
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Turri
- Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Armin Schnider
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
7
|
Magnani B, Musetti A, Frassinetti F. Spatial attention and representation of time intervals in childhood. Sci Rep 2020; 10:14960. [PMID: 32917922 PMCID: PMC7486401 DOI: 10.1038/s41598-020-71541-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
Spatial attention and spatial representation of time are strictly linked in the human brain. In young adults, a leftward shift of spatial attention by prismatic adaptation (PA), is associated with an underestimation whereas a rightward shift is associated with an overestimation of time both for visual and auditory stimuli. These results suggest a supra-modal representation of time left-to-right oriented that is modulated by a bilateral attentional shift. However, there is evidence of unilateral, instead of bilateral, effects of PA on time in elderly adults suggesting an influence of age on these effects. Here we studied the effects of spatial attention on time representation focusing on childhood. Fifty-four children aged from 5 to 11 years-old performed a temporal bisection task with visual and auditory stimuli before and after PA inducing a leftward or a rightward attentional shift. Results showed that children underestimated time after a leftward attentional shift either for visual or auditory stimuli, whereas a rightward attentional shift had null effect on time. Our results are discussed as a partial maturation of the link between spatial attention and time representation in childhood, due to immaturity of interhemispheric interactions or of executive functions necessary for the attentional complete influence on time representation.
Collapse
Affiliation(s)
- Barbara Magnani
- Centro INforma-MEnte, Via Brigata Reggio 32, 42124, Reggio Emilia, Italy.
| | - Alessandro Musetti
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Parma, Italy
| | - Francesca Frassinetti
- Department of Psychology, University of Bologna, Bologna, Italy.,Maugeri Clinical Scientific Institutes - IRCCS of Castel Goffredo, Castel Goffredo, Mantova, Italy
| |
Collapse
|
8
|
Gudmundsson L, Vohryzek J, Fornari E, Clarke S, Hagmann P, Crottaz-Herbette S. A brief exposure to rightward prismatic adaptation changes resting-state network characteristics of the ventral attentional system. PLoS One 2020; 15:e0234382. [PMID: 32584824 PMCID: PMC7316264 DOI: 10.1371/journal.pone.0234382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
A brief session of rightward prismatic adaptation (R-PA) has been shown to alleviate neglect symptoms in patients with right hemispheric damage, very likely by switching hemispheric dominance of the ventral attentional network (VAN) from the right to the left and by changing task-related activity within the dorsal attentional network (DAN). We have investigated this very rapid change in functional organisation with a network approach by comparing resting-state connectivity before and after a brief exposure i) to R-PA (14 normal subjects; experimental condition) or ii) to plain glasses (12 normal subjects; control condition). A whole brain analysis (comprising 129 regions of interest) highlighted R-PA-induced changes within a bilateral, fronto-temporal network, which consisted of 13 nodes and 11 edges; all edges involved one of 4 frontal nodes, which were part of VAN. The analysis of network characteristics within VAN and DAN revealed a R-PA-induced decrease in connectivity strength between nodes and a decrease in local efficiency within VAN but not within DAN. These results indicate that the resting-state connectivity configuration of VAN is modulated by R-PA, possibly by decreasing its modularity.
Collapse
Affiliation(s)
- Louis Gudmundsson
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
| | - Jakub Vohryzek
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Hedonia Research Group, University of Oxford, Oxford, United Kingdom
| | - Eleonora Fornari
- CIBM (Centre d'Imagerie Biomédicale), Dept. of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
| | - Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
- Signal Processing Lab 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Clarke S. Identifying patterns of cognitive deficits: the path to better outcomes after stroke. J Neurol Neurosurg Psychiatry 2020; 91:449-450. [PMID: 32139652 DOI: 10.1136/jnnp-2019-322429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/19/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Stephanie Clarke
- Service de neuropsychologie et de neuroréhabilitation, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
10
|
Prablanc C, Panico F, Fleury L, Pisella L, Nijboer T, Kitazawa S, Rossetti Y. Adapting terminology: clarifying prism adaptation vocabulary, concepts, and methods. Neurosci Res 2020; 153:8-21. [DOI: 10.1016/j.neures.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
|
11
|
Saj A, Cojan Y, Assal F, Vuilleumier P. Prism adaptation effect on neural activity and spatial neglect depend on brain lesion site. Cortex 2019; 119:301-311. [DOI: 10.1016/j.cortex.2019.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/07/2019] [Accepted: 04/29/2019] [Indexed: 11/27/2022]
|
12
|
Wearing prisms to hear differently: After-effects of prism adaptation on auditory perception. Cortex 2019; 115:123-132. [DOI: 10.1016/j.cortex.2019.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/10/2018] [Accepted: 01/15/2019] [Indexed: 11/19/2022]
|
13
|
Tissieres I, Crottaz-Herbette S, Clarke S. Implicit representation of the auditory space: contribution of the left and right hemispheres. Brain Struct Funct 2019; 224:1569-1582. [PMID: 30848352 DOI: 10.1007/s00429-019-01853-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/25/2019] [Indexed: 11/24/2022]
Abstract
Spatial cues contribute to the ability to segregate sound sources and thus facilitate their detection and recognition. This implicit use of spatial cues can be preserved in cases of cortical spatial deafness, suggesting that partially distinct neural networks underlie the explicit sound localization and the implicit use of spatial cues. We addressed this issue by assessing 40 patients, 20 patients with left and 20 patients with right hemispheric damage, for their ability to use auditory spatial cues implicitly in a paradigm of spatial release from masking (SRM) and explicitly in sound localization. The anatomical correlates of their performance were determined with voxel-based lesion-symptom mapping (VLSM). During the SRM task, the target was always presented at the centre, whereas the masker was presented at the centre or at one of the two lateral positions on the right or left side. The SRM effect was absent in some but not all patients; the inability to perceive the target when the masker was at one of the lateral positions correlated with lesions of the left temporo-parieto-frontal cortex or of the right inferior parietal lobule and the underlying white matter. As previously reported, sound localization depended critically on the right parietal and opercular cortex. Thus, explicit and implicit use of spatial cues depends on at least partially distinct neural networks. Our results suggest that the implicit use may rely on the left-dominant position-linked representation of sound objects, which has been demonstrated in previous EEG and fMRI studies.
Collapse
Affiliation(s)
- Isabel Tissieres
- Service de neuropsychologie et de neuroréhabilitation, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- Service de neuropsychologie et de neuroréhabilitation, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Stephanie Clarke
- Service de neuropsychologie et de neuroréhabilitation, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Tissieres I, Fornari E, Clarke S, Crottaz-Herbette S. Supramodal effect of rightward prismatic adaptation on spatial representations within the ventral attentional system. Brain Struct Funct 2017; 223:1459-1471. [PMID: 29151115 DOI: 10.1007/s00429-017-1572-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
Rightward prismatic adaptation (R-PA) was shown to alleviate not only visuo-spatial but also auditory symptoms in neglect. The neural mechanisms underlying the effect of R-PA have been previously investigated in visual tasks, demonstrating a shift of hemispheric dominance for visuo-spatial attention from the right to the left hemisphere both in normal subjects and in patients. We have investigated whether the same neural mechanisms underlie the supramodal effect of R-PA on auditory attention. Normal subjects underwent a brief session of R-PA, which was preceded and followed by an fMRI evaluation during which subjects detected targets within the left, central and right space in the auditory or visual modality. R-PA-related changes in activation patterns were found bilaterally in the inferior parietal lobule. In either modality, the representation of the left, central and right space increased in the left IPL, whereas the representation of the right space decreased in the right IPL. Thus, a brief exposure to R-PA modulated the representation of the auditory and visual space within the ventral attentional system. This shift in hemispheric dominance for auditory spatial attention offers a parsimonious explanation for the previously reported effects of R-PA on auditory symptoms in neglect.
Collapse
Affiliation(s)
- Isabel Tissieres
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Av. Pierre-Decker 5, 1011, Lausanne, Switzerland
| | - Eleonora Fornari
- CIBM (Centre d'Imagerie Biomédicale), Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011, Lausanne, Switzerland
| | - Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Av. Pierre-Decker 5, 1011, Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Av. Pierre-Decker 5, 1011, Lausanne, Switzerland.
| |
Collapse
|