1
|
Tamilarasi A, Sathish V, Chandrasekaran A. ASSESSMENT OF GAMMA DOSE AND ANNUAL EFFECTIVE DOSE RATE FOR COMMONLY USED FERTILIZER SAMPLES IN AGRICULTURE FIELD WITH A STATISTICAL APPROACH. RADIATION PROTECTION DOSIMETRY 2023; 199:95-106. [PMID: 36426758 DOI: 10.1093/rpd/ncac227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this present study, the activity concentration of the naturally occurring radionuclides 238U, 232Th and 40K have been measured in commonly used chemical fertilizers for agriculture by using gamma-ray spectrometry with NaI (TI) detector. Radiological hazard parameters have been calculated for samples. The mean specific activity concentration of the 238U, 232Th and 40K is 176, 5.75 and 4136 Bq kg-1, respectively. Particularly, the mean value of 238U, as well as 40K, is higher than the world recommended value. Also, the average value of radium equivalent activity is 503 Bq kg-1 and the absorbed dose rate (DR) is 282.93 nGyh-1, which is greater than the permissible limit, whereas the annual effective dose rate (AEDR) is 0.316 mSvy-1, which is lower than the world recommended value. Therefore, collected fertilizer samples significantly increase the activity concentration of natural radionuclides in the agricultural soils. Multivariate statistical techniques such as Pearson correlation and factor analysis are carried out for radioactive variables to understand the existing relationship between them. From obtained results reveals that these fertilizer samples increases the probability of adverse health effects due to natural radioactivity.
Collapse
Affiliation(s)
- Azhagesan Tamilarasi
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering (Autonomous), Chennai 603110, Tamil Nadu, India
| | - Vilvanathan Sathish
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering (Autonomous), Chennai 603110, Tamil Nadu, India
| | | |
Collapse
|
2
|
Collins AL, Blackwell M, Boeckx P, Chivers CA, Emelko M, Evrard O, Foster I, Gellis A, Gholami H, Granger S, Harris P, Horowitz AJ, Laceby JP, Martinez-Carreras N, Minella J, Mol L, Nosrati K, Pulley S, Silins U, da Silva YJ, Stone M, Tiecher T, Upadhayay HR, Zhang Y. Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. JOURNAL OF SOILS AND SEDIMENTS 2020; 20:4160-4193. [PMID: 33239964 PMCID: PMC7679299 DOI: 10.1007/s11368-020-02755-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/13/2020] [Indexed: 05/23/2023]
Abstract
PURPOSE This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. METHODS Web of Science and Google Scholar were used to review published papers spanning the period 2013-2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018-2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. SCOPE Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. CONCLUSIONS The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach.
Collapse
Affiliation(s)
- Adrian L. Collins
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Martin Blackwell
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Charlotte-Anne Chivers
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
- Centre for Rural Policy Research, University of Exeter, Lazenby House, Pennsylvania Road, Exeter, EX4 4PJ UK
| | - Monica Emelko
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario Canada
| | - Olivier Evrard
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Ian Foster
- Environmental & Geographical Sciences, Learning Hub (Room 101), University of Northampton, University Drive, Northampton, NN1 5PH UK
| | - Allen Gellis
- U.S. Geological Survey, 5522 Research Park Drive, Baltimore, MD 21228 USA
| | - Hamid Gholami
- Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan Iran
| | - Steve Granger
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Paul Harris
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Arthur J. Horowitz
- South Atlantic Water Science Center, U.S. Geological Survey, Atlanta, GA USA
| | - J. Patrick Laceby
- Alberta Environment and Parks, 3535 Research Rd NW, Calgary, Alberta T2L 2K8 Canada
| | - Nuria Martinez-Carreras
- Luxembourg Institute of Science and Technology (LIST), Catchment and Eco-hydrology Research Group (CAT), L-4422 Belvaux, Luxembourg
| | - Jean Minella
- Department of Soil Science, Federal University of Santa Maria, Roraima Ave. 1000, Santa Maria, RS 97105-900 Brazil
| | - Lisa Mol
- Department of Geography and Environmental Management, University of the West of England, Bristol, UK
| | - Kazem Nosrati
- Department of Physical Geography, School of Earth Sciences, Shahid Beheshti University, Tehran, 1983969411 Iran
| | - Simon Pulley
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Uldis Silins
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2I7 Canada
| | - Yuri Jacques da Silva
- Agronomy Department, Federal University of Piaui (UFPI), Planalto Horizonte, Bom Jesus, PI 64900-000 Brazil
| | - Micheal Stone
- Department of Geography and Environmental Management, Faculty of Environment, University of Waterloo, EV1 Room 112, Waterloo, Canada
| | - Tales Tiecher
- Department of Soil Science, Federal University of Rio Grande do Sul, Bento Gonçalves Ave. 7712, Porto Alegre, RS 91540-000 Brazil
| | - Hari Ram Upadhayay
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Yusheng Zhang
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| |
Collapse
|