1
|
Wang Y, Li X, Wang C, Gao L, Wu Y, Ni X, Sun J, Jiang J. Unveiling the transcriptomic complexity of Miscanthus sinensis using a combination of PacBio long read- and Illumina short read sequencing platforms. BMC Genomics 2021; 22:690. [PMID: 34551715 PMCID: PMC8459517 DOI: 10.1186/s12864-021-07971-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Miscanthus sinensis Andersson is a perennial grass that exhibits remarkable lignocellulose characteristics suitable for sustainable bioenergy production. However, knowledge of the genetic resources of this species is relatively limited, which considerably hampers further work on its biology and genetic improvement. Results In this study, through analyzing the transcriptome of mixed samples of leaves and stems using the latest PacBio Iso-Seq sequencing technology combined with Illumina HiSeq, we report the first full-length transcriptome dataset of M. sinensis with a total of 58.21 Gb clean data. An average of 15.75 Gb clean reads of each sample were obtained from the PacBio Iso-Seq system, which doubled the data size (6.68 Gb) obtained from the Illumina HiSeq platform. The integrated analyses of PacBio- and Illumina-based transcriptomic data uncovered 408,801 non-redundant transcripts with an average length of 1,685 bp. Of those, 189,406 transcripts were commonly identified by both methods, 169,149 transcripts with an average length of 619 bp were uniquely identified by Illumina HiSeq, and 51,246 transcripts with an average length of 2,535 bp were uniquely identified by PacBio Iso-Seq. Approximately 96 % of the final combined transcripts were mapped back to the Miscanthus genome, reflecting the high quality and coverage of our sequencing results. When comparing our data with genomes of four species of Andropogoneae, M. sinensis showed the closest relationship with sugarcane with up to 93 % mapping ratios, followed by sorghum with up to 80 % mapping ratios, indicating a high conservation of orthologs in these three genomes. Furthermore, 306,228 transcripts were successfully annotated against public databases including cell wall related genes and transcript factor families, thus providing many new insights into gene functions. The PacBio Iso-Seq data also helped identify 3,898 alternative splicing events and 2,963 annotated AS isoforms within 10 function categories. Conclusions Taken together, the present study provides a rich data set of full-length transcripts that greatly enriches our understanding of M. sinensis transcriptomic resources, thus facilitating further genetic improvement and molecular studies of the Miscanthus species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07971-x.
Collapse
Affiliation(s)
- Yongli Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Xia Li
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Congsheng Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Lu Gao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Yanfang Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Xingnan Ni
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China.
| | - Jianxiong Jiang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
2
|
Nie G, Zhong M, Cai J, Yang X, Zhou J, Appiah C, Tang M, Wang X, Feng G, Huang L, Zhang X. Transcriptome characterization of candidate genes related to chromium uptake, transport and accumulation in Miscanthus sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112445. [PMID: 34182199 DOI: 10.1016/j.ecoenv.2021.112445] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Miscanthus sinensis is a C4 perennial grass species that is widely used as forage, ornamental grass and bioenergy crop due to its broad adaption and great biological traits. Recent studies indicated that M. sinensis could also grow in marginal lands which were contaminated with heavy metals, and exhibited important ecological restoration potential. In this study, transcriptome characterization of candidate genes related to chromium (Cr) uptake, transport and accumulation in M. sinensis were employed to investigate the molecular mechanism of plant tolerance to heavy metal stress. The result showed that following treatment of 200 mg/L of Cr, plant roots could accumulate most Cr and localize mainly in cell walls and soluble fractions, whereas Cr in stems and leaves was primarily in soluble fractions. A total of 83,645 differentially expressed genes (DEGs) were obtained after the treatment. Many genes involved in heavy metal transport, metal ion chelation and photosynthesis were found to be Cr-induced DEGs. Co-expression and weighted correlation network analysis revealed that Glutathion metabolism and ABC transporters pathways play an important role in Cr tolerance of M. sinensis. A hypothesis schematic diagram for the Cr uptake, transport and accumulation of M. sinensis cells were suggested, which could provide a molecular and genetic basis for future candidate genes validation and breeding of such crops.
Collapse
Affiliation(s)
- Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Minyi Zhong
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiabang Cai
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinying Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Zhou
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Charlotte Appiah
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyu Tang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xia Wang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
De Vega JJ, Teshome A, Klaas M, Grant J, Finnan J, Barth S. Physiological and transcriptional response to drought stress among bioenergy grass Miscanthus species. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:60. [PMID: 33676571 PMCID: PMC7937229 DOI: 10.1186/s13068-021-01915-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity, resilience and photosynthetic capacity at low temperature. These qualities make Miscanthus a particularly good candidate for temperate marginal land, where yields can be limited by insufficient or excessive water supply. Differences in response to water stress have been observed among Miscanthus species, which correlated to origin. In this study, we compared the physiological and molecular responses among Miscanthus species under excessive (flooded) and insufficient (drought) water supply in glasshouse conditions. RESULTS A significant biomass loss was observed under drought conditions in all genotypes. M. x giganteus showed a lower reduction in biomass yield under drought conditions compared to the control than the other species. Under flooded conditions, biomass yield was as good as or better than control conditions in all species. 4389 of the 67,789 genes (6.4%) in the reference genome were differentially expressed during drought among four Miscanthus genotypes from different species. We observed the same biological processes were regulated across Miscanthus species during drought stress despite the DEGs being not similar. Upregulated differentially expressed genes were significantly involved in sucrose and starch metabolism, redox, and water and glycerol homeostasis and channel activity. Multiple copies of the starch metabolic enzymes BAM and waxy GBSS-I were strongly up-regulated in drought stress in all Miscanthus genotypes, and 12 aquaporins (PIP1, PIP2 and NIP2) were also up-regulated in drought stress across genotypes. CONCLUSIONS Different phenotypic responses were observed during drought stress among Miscanthus genotypes from different species, supporting differences in genetic adaption. The low number of DEGs and higher biomass yield in flooded conditions supported Miscanthus use in flooded land. The molecular processes regulated during drought were shared among Miscanthus species and consistent with functional categories known to be critical during drought stress in model organisms. However, differences in the regulated genes, likely associated with ploidy and heterosis, highlighted the value of exploring its diversity for breeding.
Collapse
Affiliation(s)
- Jose J De Vega
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Abel Teshome
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland
- Feed and Forage Development, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Manfred Klaas
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland
| | - Jim Grant
- Teagasc Statistics and Applied Physics Research Operations Group, Ashtown, Dublin 15, D15 DY05, Ireland
| | - John Finnan
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland
| | - Susanne Barth
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland.
| |
Collapse
|
4
|
Zhong M, Yang X, Hu Y, Huang L, Peng Y, Li Z, Liu Q, Wang X, Zhang X, Nie G. Identification of candidate reference genes for quantitative RT-PCR in Miscanthus sinensis subjected to various abiotic stresses. Mol Biol Rep 2020; 47:2913-2927. [PMID: 32222917 DOI: 10.1007/s11033-020-05392-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
Quantitative real-time PCR (qRT-PCR) has been widely used for studying gene expression at the transcript level. Its accuracy usually relies on the reference genes that are utilized for data normalization. Miscanthus sinensis, a perennial C4 grass with high biomass and strong resistance to adversities, is often utilized as a high value energy crop. However, no reliable reference genes have been investigated for normalizing gene expression for this species. In this study, 12 candidate reference genes were selected to identify their stability under five different abiotic stress treatments (drought, salt, cadmium, chromium and arsenic) by using geNorm, NormFinder, BestKeeper and RefFinder softwares. The results showed that 18S rRNA and Unigene33312 were the best reference genes under drought treatments. Unigene33312 and Unigene33024 were found to be the most stably expressed genes under salt stress and Cd stress. Moreover, Unigene33024 and PP2A were the most suitable reference genes under Cr stress and Unigene33024 and Sb09g019750 were deemed more suitable reference genes under As stress. In total, considering all the samples, Unigene33024 and PP2A were the most stable genes while ACTIN and Unigene26576 were the least stable reference genes for internal control. The expression patterns of two target genes (Cu/Zn SOD and CAT) were used to further verify those selected reference genes under different conditions. The results showed that the most and the least stable reference genes had clearly different expression patterns. This work comprehensively estimated the stability of reference genes in M. sinensis which may give insight to the reference genes selection in other tissues as well as other related varieties. These suggested reference genes would assist in further putative gene expression validation in M. sinensis.
Collapse
Affiliation(s)
- Minyi Zhong
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinying Yang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yiyue Hu
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Peng
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhou Li
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiuxu Liu
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xia Wang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Gang Nie
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|