1
|
Shi S, Zhang Q, Sun H, Su Z, Dan J, Liang Y, Kang Y, Du T, Sun J, Wang J, Zhang W. Glucose Oxidase-Integrated Metal-Polyphenolic Network as a Microenvironment-Activated Cascade Nanozyme for Hyperglycemic Wound Disinfection. ACS Biomater Sci Eng 2022; 8:5145-5154. [PMID: 36344935 DOI: 10.1021/acsbiomaterials.2c00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The high systemic blood glucose concentration of hyperglycemic wound microenvironment (WME) severely impedes the disinfection and healing of infected skin wounds. Herein, a WME-activated smart natural product, integrated GOx-GA-Fe nanozyme (GGFzyme), is engineered, which combines a nanozyme and natural enzyme to promote reactive oxygen species (ROS) generation in situ for hyperglycemic wound disinfection. GGFzyme can consume a high concentration of glucose in hyperglycemia wounds and generate H2O2. The conversion of glucose into gluconic acid not avails starvation treatment but reduces the pH of WME to elevate the catalytic activities of both the nanozyme (GA-Fe) and natural enzyme (GOx). And H2O2 is then high efficiently catalyzed into •OH and O2•- in situ to combat pathogenic bacteria and promote wound disinfection. The high catalytic antibacterial capacity and superior biosafety, combined with beneficial WME modulation, demonstrate that GGFzyme is a promising therapeutic agent for hyperglycemic wounds.
Collapse
Affiliation(s)
- Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Qiuping Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Zehui Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Yanmin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Yi Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
2
|
Wang ZY, Zhao T, Zhou J, Gao F. Elevated serum miR-3129-5p contributes to the progression of coronary heart disease via targeting mTOR. Kaohsiung J Med Sci 2020; 37:314-323. [PMID: 33336524 DOI: 10.1002/kjm2.12333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 11/07/2022] Open
Abstract
The current study aims to explore the miRNA changes that occur in the serum of patients with coronary heart disease (CHD) and healthy controls using a microarray technique, thereby exploring the potential biomarkers in the diagnosis of CHD and the underlying mechanism. Clinical data were reviewed, and venous blood samples were collected from 66 cases of CHD and 58 cases of healthy controls. MicroRNA-wide expression profiling identified 16 miRNAs that were aberrantly decreased by ~2-fold in the serum of patients with CHD compared to that of healthy controls. RT-PCR analysis indicated that the expression of miR-3129-5p was increased the most in patients with CHD compared with that of controls. Moreover, serum miR-3129-5p was found to be highest in the severe stenosis group, followed by the moderate stenosis group and mild stenosis group. ROC analysis showed that serum miR-3129-5p could differentiate patients with CHD from controls. Further study showed that mTOR was a target gene of miR-3129-5p. Western blot assays demonstrated that miR-3129-5p significantly suppressed the phosphorylation of S6 but increased LC3II/LC3I and Beclin1 levels. Consistently, GFP-LC3 and TEM assays indicated that miR-3129 increased autophagy puncta in H9C2 cells. More importantly, silencing mTOR significantly decreased the expression of p-S6 but increased LC3II/LC3I and Beclin expression even in H9C2 cells transfected with miR-3129-5p inhibitor, indicating that miR-3129-5p-induced cell autophagy was mediated via mTOR in H9C2 cells. In summary, elevated serum miR-3129-5p contributes to CHD by targeting mTOR signaling and may be a therapeutic target in the treatment of CHD.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- Department of Cardiology, Weanpon Industry 521 Hospital, China
| | - Ting Zhao
- Department of Cardiology, Weanpon Industry 521 Hospital, China
| | - Jing Zhou
- Department of Cardiology, Affiliated Hospital of Yan'an University, China
| | - Feng Gao
- Department of Cardiology, Affiliated Hospital of Yan'an University, China
| |
Collapse
|
3
|
Chi NF, Chiou HY, Chou SY, Hu CJ, Chen KY, Chang CF, Hsieh YC. Hyperglycemia-related FAS gene and hsa-let-7b-5p as markers of poor outcomes for ischaemic stroke. Eur J Neurol 2020; 27:1647-1655. [PMID: 32352616 DOI: 10.1111/ene.14288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Hyperglycemia in acute stroke leads to poor neurological outcomes. The role of microRNA (miRNA) in hyperglycemia-associated genes can provide new avenues for stroke prognostic applications. We aimed to identify novel genes and their regulated miRNAs that are associated with hyperglycemia-induced unfavorable stroke outcomes and further validated in the plasma exosome. Moreover, we intended to evaluate the prognostic ability of miRNA-messenger RNA (mRNA) biomarkers in addition to using traditional risk factors. METHODS After the integration analysis of small RNA sequencing and mRNA polymerase chain reaction array, two mRNAs and six miRNAs were selected for validation in middle cerebral artery occlusion animal models and ischaemic stroke patients. Receiver operator characteristic analysis was used to determine the performance of mRNA and miRNA expression. RESULTS The increased Fas expression was associated with hyperglycemia after acute stroke onset in animal and human studies. In addition, Fas gene level was significantly higher in patients with an unfavorable outcome when compared with patients with a favorable outcome. The expression of Fas and miRNA hsa-let-7b-5p in addition to traditional risk factors could increase the discrimination and predictive ability for poor prognosis. The higher exosomal Fas was further observed among patients with an unfavorable outcome, suggesting Fas signal transporting through exosome in the circulation system. CONCLUSIONS Combined analyses of Fas and has-let-7b-5p expression in addition to traditional risk factors are favorable prognostic biomarkers for predicting poor neurological outcomes at 3 months after stroke onset in ischaemic stroke patients. Additional studies are required to address the precise role of the apoptosis pathway in unfavorable hyperglycemia-induced stroke outcomes.
Collapse
Affiliation(s)
- N-F Chi
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - H-Y Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - S-Y Chou
- Ph.D. Program of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - C-J Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Stroke Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - K-Y Chen
- Ph.D. Program of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - C-F Chang
- Department of Neurosurgery, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Y-C Hsieh
- Ph.D. Program of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Fernandes M, Patel A, Husi H. C/VDdb: A multi-omics expression profiling database for a knowledge-driven approach in cardiovascular disease (CVD). PLoS One 2018; 13:e0207371. [PMID: 30419069 PMCID: PMC6231654 DOI: 10.1371/journal.pone.0207371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
The cardiovascular disease (C/VD) database is an integrated and clustered information resource that covers multi-omic studies (microRNA, genomics, proteomics and metabolomics) of cardiovascular-related traits with special emphasis on coronary artery disease (CAD). This resource was built by mining existing literature and public databases and thereafter manual biocuration was performed. To enable integration of omic data from distinct platforms and species, a specific ontology was applied to tie together and harmonise multi-level omic studies based on gene and protein clusters (CluSO) and mapping of orthologous genes (OMAP) across species. CAD continues to be a leading cause of death in the population worldwide, and it is generally thought to be an age-related disease. However, CAD incidence rates are now known to be highly influenced by environmental factors and interactions, in addition to genetic determinants. With the complexity of CAD aetiology, there is a difficulty in research studies to elucidate general elements compared to other cardiovascular diseases. Data from 92 studies, covering 13945 molecular entries (4353 unique molecules) is described, including data descriptors for experimental setup, study design, discovery-validation sample size and associated fold-changes of the differentially expressed molecular features (p-value<0.05). A dedicated interactive web interface, equipped with a multi-parametric search engine, data export and indexing menus are provided for a user-accessible browsing experience. The main aim of this work was the development of a data repository linking clinical information and molecular differential expression in several CVD-related traits from multi-omics studies (genomics, transcriptomics, proteomics and metabolomics). As an example case of how to query and identify data sets within the database framework and concomitantly demonstrate the database utility, we queried CAD-associated studies and performed a systems-level integrative analysis. URL: www.padb.org/cvd
Collapse
Affiliation(s)
- Marco Fernandes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Alisha Patel
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, United Kingdom
- * E-mail:
| |
Collapse
|