1
|
Luo Q, Li W, Xiao M. Bayesian Dictionary Learning on Robust Tubal Transformed Tensor Factorization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:11091-11105. [PMID: 37028082 DOI: 10.1109/tnnls.2023.3248156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The recent study on tensor singular value decomposition (t-SVD) that performs the Fourier transform on the tubes of a third-order tensor has gained promising performance on multidimensional data recovery problems. However, such a fixed transformation, e.g., discrete Fourier transform and discrete cosine transform, lacks being self-adapted to the change of different datasets, and thus, it is not flexible enough to exploit the low-rank and sparse property of the variety of multidimensional datasets. In this article, we consider a tube as an atom of a third-order tensor and construct a data-driven learning dictionary from the observed noisy data along the tubes of the given tensor. Then, a Bayesian dictionary learning (DL) model with tensor tubal transformed factorization, aiming to identify the underlying low-tubal-rank structure of the tensor effectively via the data-adaptive dictionary, is developed to solve the tensor robust principal component analysis (TRPCA) problem. With the defined pagewise tensor operators, a variational Bayesian DL algorithm is established and updates the posterior distributions instantaneously along the third dimension to solve the TPRCA. Extensive experiments on real-world applications, such as color image and hyperspectral image denoising and background/foreground separation problems, demonstrate both effectiveness and efficiency of the proposed approach in terms of various standard metrics.
Collapse
|
2
|
Tan J, Zhang X, Qing C, Xu X. Fourier Domain Robust Denoising Decomposition and Adaptive Patch MRI Reconstruction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7299-7311. [PMID: 37015441 DOI: 10.1109/tnnls.2022.3222394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The sparsity of the Fourier transform domain has been applied to magnetic resonance imaging (MRI) reconstruction in k -space. Although unsupervised adaptive patch optimization methods have shown promise compared to data-driven-based supervised methods, the following challenges exist in MRI reconstruction: 1) in previous k -space MRI reconstruction tasks, MRI with noise interference in the acquisition process is rarely considered. 2) Differences in transform domains should be resolved to achieve the high-quality reconstruction of low undersampled MRI data. 3) Robust patch dictionary learning problems are usually nonconvex and NP-hard, and alternate minimization methods are often computationally expensive. In this article, we propose a method for Fourier domain robust denoising decomposition and adaptive patch MRI reconstruction (DDAPR). DDAPR is a two-step optimization method for MRI reconstruction in the presence of noise and low undersampled data. It includes the low-rank and sparse denoising reconstruction model (LSDRM) and the robust dictionary learning reconstruction model (RDLRM). In the first step, we propose LSDRM for different domains. For the optimization solution, the proximal gradient method is used to optimize LSDRM by singular value decomposition and soft threshold algorithms. In the second step, we propose RDLRM, which is an effective adaptive patch method by introducing a low-rank and sparse penalty adaptive patch dictionary and using a sparse rank-one matrix to approximate the undersampled data. Then, the block coordinate descent (BCD) method is used to optimize the variables. The BCD optimization process involves valid closed-form solutions. Extensive numerical experiments show that the proposed method has a better performance than previous methods in image reconstruction based on compressed sensing or deep learning.
Collapse
|
3
|
Terpstra ML, Maspero M, Verhoeff JJC, van den Berg CAT. Accelerated respiratory-resolved 4D-MRI with separable spatio-temporal neural networks. Med Phys 2023; 50:5331-5342. [PMID: 37527331 DOI: 10.1002/mp.16643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Respiratory-resolved four-dimensional magnetic resonance imaging (4D-MRI) provides essential motion information for accurate radiation treatments of mobile tumors. However, obtaining high-quality 4D-MRI suffers from long acquisition and reconstruction times. PURPOSE To develop a deep learning architecture to quickly acquire and reconstruct high-quality 4D-MRI, enabling accurate motion quantification for MRI-guided radiotherapy (MRIgRT). METHODS A small convolutional neural network called MODEST is proposed to reconstruct 4D-MRI by performing a spatial and temporal decomposition, omitting the need for 4D convolutions to use all the spatio-temporal information present in 4D-MRI. This network is trained on undersampled 4D-MRI after respiratory binning to reconstruct high-quality 4D-MRI obtained by compressed sensing reconstruction. The network is trained, validated, and tested on 4D-MRI of 28 lung cancer patients acquired with a T1-weighted golden-angle radial stack-of-stars (GA-SOS) sequence. The 4D-MRI of 18, 5, and 5 patients were used for training, validation, and testing. Network performances are evaluated on image quality measured by the structural similarity index (SSIM) and motion consistency by comparing the position of the lung-liver interface on undersampled 4D-MRI before and after respiratory binning. The network is compared to conventional architectures such as a U-Net, which has 30 times more trainable parameters. RESULTS MODEST can reconstruct high-quality 4D-MRI with higher image quality than a U-Net, despite a thirty-fold reduction in trainable parameters. High-quality 4D-MRI can be obtained using MODEST in approximately 2.5 min, including acquisition, processing, and reconstruction. CONCLUSION High-quality accelerated 4D-MRI can be obtained using MODEST, which is particularly interesting for MRIgRT.
Collapse
Affiliation(s)
- Maarten L Terpstra
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matteo Maspero
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
A novel cell image fusion approach based on the collaboration of multilevel latent Low-Rank representation and the convolutional neural network. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Ismail TF, Strugnell W, Coletti C, Božić-Iven M, Weingärtner S, Hammernik K, Correia T, Küstner T. Cardiac MR: From Theory to Practice. Front Cardiovasc Med 2022; 9:826283. [PMID: 35310962 PMCID: PMC8927633 DOI: 10.3389/fcvm.2022.826283] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality, causing over 17. 9 million deaths worldwide per year with associated costs of over $800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically important technique for the assessment of cardiovascular anatomy, function, perfusion, and viability. However, diversity and complexity of imaging, reconstruction and analysis methods pose some limitations to the widespread use of CMR. Especially in view of recent developments in the field of machine learning that provide novel solutions to address existing problems, it is necessary to bridge the gap between the clinical and scientific communities. This review covers five essential aspects of CMR to provide a comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition protocols, motion handling, image reconstruction and quantitative analysis of the obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence building blocks that are commonly used in CMR imaging are presented. Sequences containing these building blocks are formed for parametric mapping and functional imaging techniques. Commonly perceived artifacts and potential countermeasures are discussed for these methods. (2) CMR methods for identifying CVDs are illustrated. Basic anatomy and functional processes are described to understand the cardiac pathologies and how they can be captured by CMR imaging. (3) The planning and conduct of a complete CMR exam which is targeted for the respective pathology is shown. Building blocks are illustrated to create an efficient and patient-centered workflow. Further strategies to cope with challenging patients are discussed. (4) Imaging acceleration and reconstruction techniques are presented that enable acquisition of spatial, temporal, and parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion strategies as well as their integration into the reconstruction processes is showcased. (5) Recent advances on deep learning-based reconstructions for this purpose are summarized. Furthermore, an overview of novel deep learning image segmentation and analysis methods is provided with a focus on automatic, fast and reliable extraction of biomarkers and parameters of clinical relevance.
Collapse
Affiliation(s)
- Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Cardiology Department, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Wendy Strugnell
- Queensland X-Ray, Mater Hospital Brisbane, Brisbane, QLD, Australia
| | - Chiara Coletti
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
| | - Maša Božić-Iven
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | | | - Kerstin Hammernik
- Lab for AI in Medicine, Technical University of Munich, Munich, Germany
- Department of Computing, Imperial College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Centre of Marine Sciences, Faro, Portugal
| | - Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Sheikh IM, Chachoo MA. An enforced block diagonal low-rank representation method for the classification of medical image patterns. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY : AN OFFICIAL JOURNAL OF BHARATI VIDYAPEETH'S INSTITUTE OF COMPUTER APPLICATIONS AND MANAGEMENT 2022; 14:1221-1228. [PMID: 35075441 PMCID: PMC8769777 DOI: 10.1007/s41870-021-00841-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Low-rank representation based methods have been used on a variety of medical imaging databases for the segmentation and classification of biomedical images. The subspace segmentation of the data is performed by generating the block diagonal coefficient matrix. Whereas, the data is classified by performing the partitioning of the low-rank representation matrix. There exist several such methods for analysing medical images. The major difference between them lies in the construction of the data dictionary. Most of the time, the input data pattern is used as the dictionary for learning the representation matrix. The direct use of the input data for learning the representation degrades the performance of the model because medical images are subjected to outliers of multiple types, which include environmental lighting, image appearance and varying illumination. These types of errors induce noise in the data. It has been observed that the representation-based model is robust when the training data is clean. If the training data contains corrupted subsamples, the performance of the model drops down. We have addressed the mentioned problem by adopting a class-wise dictionary learning approach. In which the pattern of each class is learnt as the set of tuples in the dictionary. The model has been evaluated on several medical imaging datasets, which includes the Break-his dataset, ALL-IDB, biomedical images, covid CT and chest X-ray. The classification performance of the model is best for the biomedical database (99.16%) followed by the Covid dataset (94%), ALL-IDB database (93.47%) and Break-his dataset (93%).
Collapse
Affiliation(s)
- Ishfaq Majeed Sheikh
- Department of Computer Science, University of Kashmir, Hazratbal Srinagar, Naseem Bagh, Srinagar, 190006 India
| | - Manzoor Ahmad Chachoo
- Department of Computer Science, University of Kashmir, Hazratbal Srinagar, Naseem Bagh, Srinagar, 190006 India
| |
Collapse
|
7
|
He Z, Zhu YN, Qiu S, Wang T, Zhang C, Sun B, Zhang X, Feng Y. Low-Rank and Framelet Based Sparsity Decomposition for Interventional MRI Reconstruction. IEEE Trans Biomed Eng 2022; 69:2294-2304. [PMID: 35015631 DOI: 10.1109/tbme.2022.3142129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Interventional MRI (i-MRI) is crucial for MR image-guided therapy. Current image reconstruction methods for dynamic MR imaging are mostly retrospective that may not be suitable for i-MRI in real-time. Therefore, an algorithm to reconstruct images without a temporal pattern as in dynamic imaging is needed for i-MRI. METHODS We proposed a low-rank and sparsity (LS) decomposition algorithm with framelet transform to reconstruct the interventional feature with a high temporal resolution. Different from the existing LS based algorithm, the spatial sparsity of both the low-rank and sparsity components was used. We also used a primal dual fixed point (PDFP) method for optimization of the objective function to avoid solving sub-problems. Intervention experiments with gelatin and brain phantoms were carried out for validation. RESULTS The LS decomposition with framelet transform and PDFP could provide the best reconstruction performance compared with those without. Satisfying reconstruction results were obtained with only 10 radial spokes for a temporal resolution of 60 ms. CONCLUSION AND SIGNIFICANCE The proposed method has the potential for i-MRI in many different application scenarios.
Collapse
|
8
|
Staniszewski M, Klose U. Improvement of Fast Model-Based Acceleration of Parameter Look-Locker T 1 Mapping. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19245371. [PMID: 31817483 PMCID: PMC6960582 DOI: 10.3390/s19245371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Quantitative mapping is desirable in many scientific and clinical magneric resonance imaging (MRI) applications. Recent inverse recovery-look locker sequence enables single-shot T1 mapping with a time of a few seconds but the main computational load is directed into offline reconstruction, which can take from several minutes up to few hours. In this study we proposed improvement of model-based approach for T1-mapping by introduction of two steps fitting procedure. We provided analysis of further reduction of k-space data, which lead us to decrease of computational time and perform simulation of multi-slice development. The region of interest (ROI) analysis of human brain measurements with two different initial models shows that the differences between mean values with respect to a reference approach are in white matter-0.3% and 1.1%, grey matter-0.4% and 1.78% and cerebrospinal fluid-2.8% and 11.1% respectively. With further improvements we were able to decrease the time of computational of single slice to 6.5 min and 23.5 min for different initial models, which has been already not achieved by any other algorithm. In result we obtained an accelerated novel method of model-based image reconstruction in which single iteration can be performed within few seconds on home computer.
Collapse
Affiliation(s)
- Michał Staniszewski
- Institute of Informatics, Silesian University of Technology, Gliwice 44-100, Poland
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls University, Tübingen 72076, Germany;
| |
Collapse
|
9
|
Menchón-Lara RM, Simmross-Wattenberg F, Casaseca-de-la-Higuera P, Martín-Fernández M, Alberola-López C. Reconstruction techniques for cardiac cine MRI. Insights Imaging 2019; 10:100. [PMID: 31549235 PMCID: PMC6757088 DOI: 10.1186/s13244-019-0754-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
The present survey describes the state-of-the-art techniques for dynamic cardiac magnetic resonance image reconstruction. Additionally, clinical relevance, main challenges, and future trends of this image modality are outlined. Thus, this paper aims to provide a general vision about cine MRI as the standard procedure in functional evaluation of the heart, focusing on technical methodologies.
Collapse
Affiliation(s)
- Rosa-María Menchón-Lara
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain.
| | - Federico Simmross-Wattenberg
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain
| | - Pablo Casaseca-de-la-Higuera
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain
| | - Marcos Martín-Fernández
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain
| | - Carlos Alberola-López
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain
| |
Collapse
|