1
|
Corradi Z, Dhaenens CM, Grunewald O, Kocabaş IS, Meunier I, Banfi S, Karali M, Cremers FPM, Hitti-Malin RJ. Novel and Recurrent Copy Number Variants in ABCA4-Associated Retinopathy. Int J Mol Sci 2024; 25:5940. [PMID: 38892127 PMCID: PMC11173210 DOI: 10.3390/ijms25115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
ABCA4 is the most frequently mutated gene leading to inherited retinal disease (IRD) with over 2200 pathogenic variants reported to date. Of these, ~1% are copy number variants (CNVs) involving the deletion or duplication of genomic regions, typically >50 nucleotides in length. An in-depth assessment of the current literature based on the public database LOVD, regarding the presence of known CNVs and structural variants in ABCA4, and additional sequencing analysis of ABCA4 using single-molecule Molecular Inversion Probes (smMIPs) for 148 probands highlighted recurrent and novel CNVs associated with ABCA4-associated retinopathies. An analysis of the coverage depth in the sequencing data led to the identification of eleven deletions (six novel and five recurrent), three duplications (one novel and two recurrent) and one complex CNV. Of particular interest was the identification of a complex defect, i.e., a 15.3 kb duplicated segment encompassing exon 31 through intron 41 that was inserted at the junction of a downstream 2.7 kb deletion encompassing intron 44 through intron 47. In addition, we identified a 7.0 kb tandem duplication of intron 1 in three cases. The identification of CNVs in ABCA4 can provide patients and their families with a genetic diagnosis whilst expanding our understanding of the complexity of diseases caused by ABCA4 variants.
Collapse
Affiliation(s)
- Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Université de Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Olivier Grunewald
- Université de Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Ipek Selen Kocabaş
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Isabelle Meunier
- Institute des Neurosciences de Montpellier, INSERM, Université de Montpellier, F-34295 Montpellier, France
| | - Sandro Banfi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Marianthi Karali
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 81031 Naples, Italy
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rebekkah J. Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
3
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Bauwens M, Garanto A, Sangermano R, Naessens S, Weisschuh N, De Zaeytijd J, Khan M, Sadler F, Balikova I, Van Cauwenbergh C, Rosseel T, Bauwens J, De Leeneer K, De Jaegere S, Van Laethem T, De Vries M, Carss K, Arno G, Fakin A, Webster AR, de Ravel de l'Argentière TJL, Sznajer Y, Vuylsteke M, Kohl S, Wissinger B, Cherry T, Collin RWJ, Cremers FPM, Leroy BP, De Baere E. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genet Med 2019; 21:1761-1771. [PMID: 30670881 PMCID: PMC6752479 DOI: 10.1038/s41436-018-0420-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022] Open
Abstract
Purpose ABCA4-associated disease, a recessive retinal dystrophy, is hallmarked by a large proportion of patients with only one pathogenic ABCA4 variant, suggestive for missing heritability. Methods By locus-specific analysis of ABCA4, combined with extensive functional studies, we aimed to unravel the missing alleles in a cohort of 67 patients (p), with one (p = 64) or no (p = 3) identified coding pathogenic variants of ABCA4. Results We identified eight pathogenic (deep-)intronic ABCA4 splice variants, of which five are novel and six structural variants, four of which are novel, including two duplications. Together, these variants account for the missing alleles in 40.3% of patients. Furthermore, two novel variants with a putative cis-regulatory effect were identified. The common hypomorphic variant c.5603A>T p.(Asn1868Ile) was found as a candidate second allele in 43.3% of patients. Overall, we have elucidated the missing heritability in 83.6% of our cohort. In addition, we successfully rescued three deep-intronic variants using antisense oligonucleotide (AON)-mediated treatment in HEK 293-T cells and in patient-derived fibroblast cells. Conclusion Noncoding pathogenic variants, novel structural variants, and a common hypomorphic allele of the ABCA4 gene explain the majority of unsolved cases with ABCA4-associated disease, rendering this retinopathy a model for missing heritability in autosomal recessive disorders.
Collapse
Affiliation(s)
- Miriam Bauwens
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Riccardo Sangermano
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarah Naessens
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Françoise Sadler
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Irina Balikova
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Caroline Van Cauwenbergh
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Toon Rosseel
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Jim Bauwens
- Department of Computer Science, Free University of Brussels, Brussels, Belgium
| | - Kim De Leeneer
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sarah De Jaegere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Thalia Van Laethem
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Meindert De Vries
- Department of Ophthalmology, Hôpital des Enfants Reine Fabiola, Brussels, Belgium
| | - Keren Carss
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,UK NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK
| | - Ana Fakin
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Yves Sznajer
- Centre de Génétique Humaine, Cliniques Universitaires St. Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Timothy Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart P Leroy
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|