1
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Osadare IE, Monecke S, Abdilahi A, Müller E, Collatz M, Braun S, Reissig A, Schneider-Brachert W, Kieninger B, Eichner A, Rath A, Fritsch J, Gary D, Frankenfeld K, Wellhöfer T, Ehricht R. Fast and Economic Microarray-Based Detection of Species-, Resistance-, and Virulence-Associated Genes in Clinical Strains of Vancomycin-Resistant Enterococci (VRE). SENSORS (BASEL, SWITZERLAND) 2024; 24:6476. [PMID: 39409516 PMCID: PMC11479252 DOI: 10.3390/s24196476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Today, there is a continuous worldwide battle against antimicrobial resistance (AMR) and that includes vancomycin-resistant enterococci (VRE). Methods that can adequately and quickly detect transmission chains in outbreaks are needed to trace and manage this problem fast and cost-effectively. In this study, DNA-microarray-based technology was developed for this purpose. It commenced with the bioinformatic design of specific oligonucleotide sequences to obtain amplification primers and hybridization probes. Microarrays were manufactured using these synthesized oligonucleotides. A highly parallel and stringent labeling and hybridization protocol was developed and employed using isolated genomic DNA from previously sequenced (referenced) clinical VRE strains for optimal sensitivity and specificity. Microarray results showed the detection of virulence, resistance, and species-specific genes in the VRE strains. Theoretical predictions of the microarray results were also derived from the sequences of the same VRE strain and were compared to array results while optimizing protocols until the microarray result and theoretical predictions were a match. The study concludes that DNA microarray technology can be used to quickly, accurately, and economically detect specifically and massively parallel target genes in enterococci.
Collapse
Affiliation(s)
- Ibukun Elizabeth Osadare
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Abdinasir Abdilahi
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Maximilian Collatz
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha Braun
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Annett Reissig
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Bärbel Kieninger
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Anja Eichner
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Anca Rath
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Dominik Gary
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (K.F.); (T.W.)
| | - Katrin Frankenfeld
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (K.F.); (T.W.)
| | - Thomas Wellhöfer
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (K.F.); (T.W.)
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
3
|
Stege PB, Beekman JM, Hendrickx APA, van Eijk L, Rogers MRC, Suen SWF, Vonk AM, Willems RJL, Paganelli FL. Colonization of vancomycin-resistant Enterococcus faecium in human-derived colonic epithelium: unraveling the transcriptional dynamics of host-enterococcal interactions. FEMS MICROBES 2024; 5:xtae014. [PMID: 38813098 PMCID: PMC11134301 DOI: 10.1093/femsmc/xtae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is an opportunistic pathogen able to colonize the intestines of hospitalized patients. This initial colonization is an important step in the downstream pathogenesis, which includes outgrowth of the intestinal microbiota and potential infection of the host. The impact of intestinal overgrowth on host-enterococcal interactions is not well understood. We therefore applied a RNAseq approach in order to unravel the transcriptional dynamics of E. faecium upon co-culturing with human derived colonic epithelium. Co-cultures of colonic epithelium with a hospital-associated vancomycin resistant (vanA-type) E. faecium (VRE) showed that VRE resided on top of the colonic epithelium when analyzed by microscopy. RNAseq revealed that exposure to the colonic epithelium resulted in upregulation of 238 VRE genes compared to the control condition, including genes implicated in pili expression, conjugation (plasmid_2), genes related to sugar uptake, and biofilm formation (chromosome). In total, 260 were downregulated, including the vanA operon located on plasmid_3. Pathway analysis revealed an overall switch in metabolism to amino acid scavenging and reduction. In summary, our study demonstrates that co-culturing of VRE with human colonic epithelium promotes an elaborate gene response in VRE, enhancing our insight in host-E. faecium interactions, which might facilitate the design of novel anti-infectivity strategies.
Collapse
Affiliation(s)
- Paul B Stege
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721MA, The Netherlands
| | - Laura van Eijk
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Sylvia W F Suen
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
- Winclove Probiotics, Amsterdam, 1033JS, The Netherlands
| |
Collapse
|
4
|
AL Rubaye M, Janice J, Bjørnholt JV, Kacelnik O, Haldorsen BC, Nygaard RM, Hegstad J, Sundsfjord A, Hegstad K. The population structure of vancomycin-resistant and -susceptible Enterococcus faecium in a low-prevalence antimicrobial resistance setting is highly influenced by circulating global hospital-associated clones. Microb Genom 2023; 9:001160. [PMID: 38112685 PMCID: PMC10763505 DOI: 10.1099/mgen.0.001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Between 2010 and 2015 the incidence of vancomycin-resistant Enterococcus faecium (VREfm) in Norway increased dramatically. Hence, we selected (1) a random subset of vancomycin-resistant enterococci (VRE) from the Norwegian Surveillance System for Communicable Diseases (2010-15; n=239) and (2) Norwegian vancomycin-susceptible E. faecium (VSEfm) bacteraemia isolates from the national surveillance system for antimicrobial resistance in microbes (2008 and 2014; n=261) for further analysis. Whole-genome sequences were collected for population structure, van gene cluster, mobile genetic element and virulome analysis, as well as antimicrobial susceptibility testing. Comparative genomic and phylogeographical analyses were performed with complete genomes of global E. faecium strains from the National Center for Biotechnology Information (NCBI) (1946-2022; n=272). All Norwegian VREfm and most of the VSEfm clustered with global hospital-associated sequence types (STs) in the phylogenetic subclade A1. The vanB2 subtype carried by chromosomal Tn1549 integrative conjugative elements was the dominant van type. The major Norwegian VREfm cluster types (CTs) were in accordance with concurrent European CTs. The dominant vanB-type VREfm CTs, ST192-CT3/26 and ST117-CT24, were mostly linked to a single hospital in Norway where the clones spread after independent chromosomal acquisition of Tn1549. The less prevalent vanA VRE were associated with more diverse CTs and vanA carrying Inc18 or RepA_N plasmids with toxin-antitoxin systems. Only 5 % of the Norwegian VRE were Enterococcus faecalis, all of which contained vanB. The Norwegian VREfm and VSEfm isolates harboured CT-specific virulence factor (VF) profiles supporting biofilm formation and colonization. The dominant VREfm CTs in general hosted more virulence determinants than VSEfm. The phylogenetic clade B VSEfm isolates (n=21), recently classified as Enterococcus lactis, harboured fewer VFs than E. faecium in general, and particularly subclade A1 isolates. In conclusion, the population structure of Norwegian E. faecium isolates mirrors the globally prevalent clones and particularly concurrent European VREfm/VSEfm CTs. Novel chromosomal acquisition of vanB2 on Tn1549 from the gut microbiota, however, formed a single major hospital VREfm outbreak. Dominant VREfm CTs contained more VFs than VSEfm.
Collapse
Affiliation(s)
- Mushtaq AL Rubaye
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Kacelnik
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørg C. Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Randi M. Nygaard
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Joachim Hegstad
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - the Norwegian VRE study group
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Alvarez Narvaez S, Sanchez S. Exploring the Accessory Genome of Multidrug-Resistant Rhodococcus equi Clone 2287. Antibiotics (Basel) 2023; 12:1631. [PMID: 37998833 PMCID: PMC10669575 DOI: 10.3390/antibiotics12111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Decades of antimicrobial overuse to treat respiratory disease in foals have promoted the emergence and spread of zoonotic multidrug-resistant (MDR) Rhodococcus equi worldwide. Three main R. equi MDR clonal populations-2287, G2106, and G2017-have been identified so far. However, only clones 2287 and G2016 have been isolated from sick animals, with clone 2287 being the main MDR R. equi recovered. The genetic mechanisms that make this MDR clone superior to the others at infecting foals are still unknown. Here, we performed a deep genetic characterization of the accessory genomes of 207 R. equi isolates, and we describe IME2287, a novel genetic element in the accessory genome of clone 2287, potentially involved in the maintenance and spread of this MDR population over time. IME2287 is a putative self-replicative integrative mobilizable element (IME) carrying a DNA replication and partitioning operon and genes encoding its excision and integration from the R. equi genome via a serine recombinase. Additionally, IME2287 encodes a protein containing a Toll/interleukin-1 receptor (TIR) domain that may inhibit TLR-mediated NF-kB signaling in the host and a toxin-antitoxin (TA) system, whose orthologs have been associated with antibiotic resistance/tolerance, virulence, pathogenicity islands, bacterial persistence, and pathogen trafficking. This new set of genes may explain the success of clone 2287 over the other MDR R. equi clones.
Collapse
Affiliation(s)
- Sonsiray Alvarez Narvaez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Li S, Manik MK, Shi Y, Kobe B, Ve T. Toll/interleukin-1 receptor domains in bacterial and plant immunity. Curr Opin Microbiol 2023; 74:102316. [PMID: 37084552 DOI: 10.1016/j.mib.2023.102316] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/23/2023]
Abstract
The Toll/interleukin-1 receptor (TIR) domain is found in animal, plant, and bacterial immune systems. It was first described as a protein-protein interaction module mediating signalling downstream of the Toll-like receptor and interleukin-1 receptor families in animals. However, studies of the pro-neurodegenerative protein sterile alpha and TIR motif containing 1, plant immune receptors, and many bacterial TIR domain-containing proteins revealed that TIR domains have enzymatic activities and can produce diverse nucleotide products using nicotinamide adenine dinucleotide (NAD+) or nucleic acids as substrates. Recent work has led to key advances in understanding how TIR domain enzymes work in bacterial and plant immune systems as well as the function of their signalling molecules.
Collapse
Affiliation(s)
- Sulin Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mohammad K Manik
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
7
|
Characterization of the novel temperate Staphylococcus haemolyticus phage IME1365_01. Arch Virol 2023; 168:41. [PMID: 36609576 DOI: 10.1007/s00705-022-05650-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/03/2022] [Indexed: 01/09/2023]
Abstract
The presence of a novel functional prophage, IME1365_01, was predicted from bacterial high-throughput sequencing data and then successfully induced from Staphylococcus haemolyticus by mitomycin C treatment. Transmission electron microscopy showed that phage IME1365_01 has an icosahedral head (43 nm in diameter) and a long tail (172 nm long). This phage possesses a double-stranded DNA genome of 44,875 bp with a G+C content of 35.35%. A total of 63 putative open reading frames (ORFs) were identified in its genome. BLASTn analysis revealed that IME1365_01 is similar to Staphylococcus phage vB_SepS_E72, but with a genome homology coverage of only 26%. The phage genome does not have fixed termini. In ORF24 of phage IME1365_01, a conserved Toll-interleukin-1 receptor domain of the TIR_2 superfamily (accession no. c123749) is located at its N-terminus, and this might serve as a component of an anti-bacterial system. In conclusion, we developed a platform to obtain active temperate phage from prediction, identification, and induction from its bacterial host. After mass screening using this platform, numerous temperate phages and their innate anti-bacterial elements can provide extensive opportunities for therapy against bacterial (especially drug-resistant bacterial) infections.
Collapse
|
8
|
The fish pathogen Aliivibrio salmonicida LFI1238 can degrade and metabolize chitin despite major gene loss in the chitinolytic pathway. Appl Environ Microbiol 2021; 87:e0052921. [PMID: 34319813 DOI: 10.1128/aem.00529-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fish pathogen Aliivibrio (Vibrio) salmonicida LFI1238 is thought to be incapable of utilizing chitin as a nutrient source since approximately half of the genes representing the chitinolytic pathway are disrupted by insertion sequences. In the present study, we combined a broad set of analytical methods to investigate this hypothesis. Cultivation studies revealed that Al. salmonicida grew efficiently on N-acetylglucosamine (GlcNAc) and chitobiose ((GlcNAc)2), the primary soluble products resulting from enzymatic chitin hydrolysis. The bacterium was also able to grow on chitin particles, albeit at a lower rate compared to the soluble substrates. The genome of the bacterium contains five disrupted chitinase genes (pseudogenes) and three intact genes encoding a glycoside hydrolase family 18 (GH18) chitinase and two auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenases (LPMOs). Biochemical characterization showed that the chitinase and LPMOs were able to depolymerize both α- and β-chitin to (GlcNAc)2 and oxidized chitooligosaccharides, respectively. Notably, the chitinase displayed up to 50-fold lower activity compared to other well-studied chitinases. Deletion of the genes encoding the intact chitinolytic enzymes showed that the chitinase was important for growth on β-chitin, whereas the LPMO gene-deletion variants only showed minor growth defects on this substrate. Finally, proteomic analysis of Al. salmonicida LFI1238 growth on β-chitin showed expression of all three chitinolytic enzymes, and intriguingly also three of the disrupted chitinases. In conclusion, our results show that Al. salmonicida LFI1238 can utilize chitin as a nutrient source and that the GH18 chitinase and the two LPMOs are needed for this ability. IMPORTANCE The ability to utilize chitin as a source of nutrients is important for the survival and spread of marine microbial pathogens in the environment. One such pathogen is Aliivibrio (Vibrio) salmonicida, the causative agent of cold water vibriosis. Due to extensive gene decay, many key enzymes in the chitinolytic pathway have been disrupted, putatively rendering this bacterium incapable of chitin degradation and utilization. In the present study we demonstrate that Al. salmonicida can degrade and metabolize chitin, the most abundant biopolymer in the ocean. Our findings shed new light on the environmental adaption of this fish pathogen.
Collapse
|
9
|
Roussin M, Salcedo SP. NAD+-targeting by bacteria: an emerging weapon in pathogenesis. FEMS Microbiol Rev 2021; 45:6315328. [PMID: 34223888 DOI: 10.1093/femsre/fuab037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a major cofactor in redox reactions in all lifeforms. A stable level of NAD+ is vital to ensure cellular homeostasis. Some pathogens can modulate NAD+ metabolism to their advantage and even utilize or cleave NAD+ from the host using specialized effectors known as ADP-ribosyltransferase toxins and NADases, leading to energy store depletion, immune evasion, or even cell death. This review explores recent advances in the field of bacterial NAD+-targeting toxins, highlighting the relevance of NAD+ modulation as an emerging pathogenesis strategy. In addition, we discuss the role of specific NAD+-targeting toxins in niche colonization and bacterial lifestyle as components of Toxin/Antitoxin systems and key players in inter-bacterial competition. Understanding the mechanisms of toxicity, regulation, and secretion of these toxins will provide interesting leads in the search for new antimicrobial treatments in the fight against infectious diseases.
Collapse
Affiliation(s)
- Morgane Roussin
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| |
Collapse
|