1
|
Gao Y, Chen L, Liu D, Luo C, Ye J, Pei H, Zhang J, Zhang L. FM-568: A Promising Phenyl-Hydrazonomalononitrile Antibacterial Agent for the Sustainable Management of Citrus Canker. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28305-28315. [PMID: 39666891 DOI: 10.1021/acs.jafc.4c09946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), poses a significant threat to citrus production worldwide. To develop effective and eco-friendly antibacterial agents, we designed and synthesized phenyl-hydrazonomalononitrile derivatives using a scaffold-hopping strategy. Among these, FM-568 emerged as a potent candidate, exhibiting broad-spectrum antibacterial activity in vitro against various phytopathogenic bacteria, including Xcc. Greenhouse experiments demonstrated that FM-568 achieved a control efficacy of 88.36% against citrus canker at 400 μg/mL, with an EC50 of 26.68 μg/mL. Field trials in two major citrus-producing regions in China confirmed its effectiveness, yielding control efficacies of 86.60 and 77.87% at 400 μg/mL, outperforming conventional agents like zinc thiazole and thiadiazole copper. Density functional theory calculations suggested that FM-568's optimized scaffold and electronic properties contribute to its enhanced antibacterial activity. These findings indicate that FM-568 is a promising eco-friendly alternative for managing citrus canker. Further studies on its mechanism of action, safety profile, and formulation optimization are warranted to advance its development for sustainable citrus production.
Collapse
Affiliation(s)
- Yixing Gao
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
- Metisa Biotechnology Co., Ltd., Nanning 530000, China
| | - Liang Chen
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
| | - Dongdong Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Chunfeng Luo
- Metisa Biotechnology Co., Ltd., Nanning 530000, China
| | - Jialin Ye
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
| | - Hongyan Pei
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
| | - Jing Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
- Metisa Biotechnology Co., Ltd., Nanning 530000, China
| | - Lixin Zhang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
- Metisa Biotechnology Co., Ltd., Nanning 530000, China
| |
Collapse
|
2
|
Qian Y, Lai L, Cheng M, Fang H, Fan D, Zylstra GJ, Huang X. Identification, characterization, and distribution of novel amidase gene aphA in sphingomonads conferring resistance to amphenicol antibiotics. Appl Environ Microbiol 2024; 90:e0151224. [PMID: 39431819 DOI: 10.1128/aem.01512-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Amphenicol antibiotics, such as chloramphenicol (CHL), thiamphenicol (TAP), and florfenicol (Ff), are high-risk emerging pollutants. Their extensive usage in aquaculture, livestock, and poultry farming has led to an increase in bacterial antibiotic resistance and facilitated the spread of resistance genes. Yet, limited research has been conducted on the co-resistance of CHL, TAP, and Ff. Herein, a novel amidase AphA was identified from a pure cultured strain that can concurrently mediate the hydrolytic inactivation of CHL, TAP, and Ff, yielding products p-nitrophenylserinol, thiamphenicol amine (TAP-amine), and florfenicol amine (Ff-amine), respectively. The antibacterial activity of these antibiotic hydrolysates exhibited a significant reduction or complete loss in comparison to the parent compounds. Notably, AphA shared less than 26% amino acid sequence identity with previously reported enzymes and exhibited high conservation within the sphingomonad species. Through enzymatic kinetic analysis, the AphA exhibited markedly superior affinity and catalytic activity toward Ff in comparison to CHL and TAP. Site-directed mutagenesis analysis revealed the indispensability of catalytic triad residues, particularly serine 153 and histidine 277, in forming crucial hydrogen bonds essential for AphA's hydrolytic activity. Comparative genomic analysis showed that aphA genes in some species are closely adjacent to various transposable elements, indicating that there is a high potential risk of horizontal gene transfer (HGT). This study established a hydrolysis resistance mechanism of amphenicol antibiotics in sphingomonads, which offers theoretical guidance and a novel marker gene for assessing the prevalent risk of amphenicol antibiotics in the environment.IMPORTANCEAmphenicol antibiotics are pervasive emerging contaminants that present a substantial threat to ecological systems. Few studies have elucidated resistance genes or mechanisms that can act on CHL, TAP, and Ff simultaneously. The results of this study fill this knowledge gap and identify a novel amidase AphA from the bacterium Sphingobium yanoikuyae B1, which mediates three typical amphenicol antibiotic inactivation, and the molecular mechanism is elucidated. The diverse types of transposable elements were identified in the flanking regions of the aphA gene, indicating the risk of horizontal transfer of this antibiotic resistance genes (ARG). These findings offer new insights into the bacterial resistance to amphenicol antibiotics. The gene reported herein can be utilized as a novel genetic diagnostic marker for monitoring the environmental fate of amphenicol antibiotics, thereby enriching risk assessment efforts within the context of antibiotic resistance.
Collapse
Affiliation(s)
- Yingying Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lin Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Fan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gerben J Zylstra
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
4
|
Yang Y, Chen K, Wang G, Liu H, Shao L, Zhou X, Liu L, Yang S. Discovery of Novel Pentacyclic Triterpene Acid Amide Derivatives as Excellent Antimicrobial Agents Dependent on Generation of Reactive Oxygen Species. Int J Mol Sci 2023; 24:10566. [PMID: 37445744 DOI: 10.3390/ijms241310566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Developing new agricultural bactericides is a feasible strategy for stopping the increase in the resistance of plant pathogenic bacteria. Some pentacyclic triterpene acid derivatives were elaborately designed and synthesized. In particular, compound A22 exhibited the best antimicrobial activity against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac) with EC50 values of 3.34 and 3.30 mg L-1, respectively. The antimicrobial mechanism showed that the compound A22 induced excessive production and accumulation of reactive oxygen species (ROS) in Xoo cells, leading to a decrease in superoxide dismutase and catalase enzyme activities and an increase in malondialdehyde content. A22 also produced increases in Xoo cell membrane permeability and eventual cell death. In addition, in vivo experiments showed that A22 at 200 mg L-1 exhibited protective activity against rice bacterial blight (50.44%) and citrus canker disease (84.37%). Therefore, this study provides a paradigm for the agricultural application of pentacyclic triterpene acid.
Collapse
Affiliation(s)
- Yihong Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kunlun Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Guangdi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongwu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lihui Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Kirubakaran R, ArulJothi KN, Revathi S, Shameem N, Parray JA. Emerging priorities for microbial metagenome research. BIORESOURCE TECHNOLOGY REPORTS 2020; 11:100485. [PMID: 32835181 PMCID: PMC7319936 DOI: 10.1016/j.biteb.2020.100485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Overwhelming anthropogenic activities lead to deterioration of natural resources and the environment. The microorganisms are considered desirable, due to their suitability for easy genetic manipulation and handling. With the aid of modern biotechnological techniques, the culturable microorganisms have been widely exploited for the benefit of mankind. Metagenomics, a powerful tool to access the abundant biodiversity of the environmental samples including the unculturable microbes, to determine microbial diversity and population structure, their ecological roles and expose novel genes of interest. This review focuses on the microbial adaptations to the adverse environmental conditions, metagenomic techniques employed towards microbial biotechnology. Metagenomic approach helps to understand microbial ecology and to identify useful microbial derivatives like antibiotics, toxins, and enzymes with diverse and enhanced function. It also summarizes the application of metagenomics in clinical diagnosis, improving microbial ecology, therapeutics, xenobiotic degradation and impact on agricultural crops.
Collapse
Affiliation(s)
| | - K N ArulJothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Nowsheen Shameem
- Department of Environmental Science, Cluster University Srinagar, J&K, India
| | - Javid A Parray
- Department of Environmental Science, Govt SAM Degree College Budgam, J&K, India
| |
Collapse
|
6
|
Uqab B, Nazir R, Ahmad Ganai B, Rahi P, Rehman S, Farooq S, Dar R, Parray JA, Fahad Al-Arjani Al-Arjani AB, Tabassum B, Fathi Abd Allah E. MALDI-TOF-MS and 16S rRNA characterization of lead tolerant metallophile bacteria isolated from saffron soils of Kashmir for their sequestration potential. Saudi J Biol Sci 2020; 27:2047-2053. [PMID: 32714029 PMCID: PMC7376117 DOI: 10.1016/j.sjbs.2020.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 11/25/2022] Open
Abstract
Toxic metal contamination in soils due industrialization is nowadays a concern to the scientists worldwide. The current study deals with the evaluation of response and tolerance by isolated metallophilic bacteria in different lead concentrations (100 ppm to 1000 ppm). By taking optical densities of the isolates, the minimum inhibitory concentration (MIC) of Pb2+ were determined.16S rRNA and MALDI-TOF MS were used for the identification of the bacteria. Total of 37 isolates were observed, among them 04 (Staphylococcus equorum, Staphylococcus warneri, Bacillus safensis and Bacillus thuringiensis), isolated were detected having efficacy of Pb2+tolerance and sequestration at varying MIC. Furthermore, B. thuringiensis was observed to have highest (900 ppm) tolerance for lead and lowest (500 ppm) for Staphylococcus warneri. Moreover, the highest (65.3%) sequestration potential has been observed for B. thuringiensis and least (52.8%) for S. warneri. The tolerance and sequestration potential properties of these isolated species can be utilised to exterminate heavy metals and reduce their toxicity from the contaminated environment.
Collapse
Affiliation(s)
- Baba Uqab
- Department of Environmental Science, University of Kashmir, 190006 Jammu & Kashmir, India
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), University of Kashmir, 190006 Jammu & Kashmir, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, 190006 Jammu & Kashmir, India
| | - Praveen Rahi
- National Centre For Microbial Research (NCMR), Pune, India
| | - Sabeehah Rehman
- Centre of Research for Development (CORD), University of Kashmir, 190006 Jammu & Kashmir, India
| | - Saleem Farooq
- Department of Environmental Science, University of Kashmir, 190006 Jammu & Kashmir, India
| | - Rubiya Dar
- Centre of Research for Development (CORD), University of Kashmir, 190006 Jammu & Kashmir, India
| | - Javid A Parray
- Centre of Research for Development (CORD), University of Kashmir, 190006 Jammu & Kashmir, India.,Govt SAM Degree College Budgam, JK 191111, India
| | | | - Baby Tabassum
- Toxicology Laboratory, Department of Zoology, Govt. Raza P.G. College Rampur, 244901 U.P., India
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Ekram MAE, Sarker I, Rahi MS, Rahman MA, Saha AK, Reza MA. Efficacy of soil-borne Enterobacter
sp. for carbofuran degradation: HPLC quantitation of degradation rate. J Basic Microbiol 2020; 60:390-399. [DOI: 10.1002/jobm.201900570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Md. Akhtar-E Ekram
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology; University of Rajshahi; Rajshahi Bangladesh
| | - Indrani Sarker
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology; University of Rajshahi; Rajshahi Bangladesh
| | - Md. Sifat Rahi
- Department of Genetic Engineering and Biotechnology; Jashore University of Science and Technology; Jashore Bangladesh
| | - Md. Atikur Rahman
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology; University of Rajshahi; Rajshahi Bangladesh
| | - Ananda K. Saha
- Department of Zoology; University of Rajshahi; Rajshahi Bangladesh
| | - Md. Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology; University of Rajshahi; Rajshahi Bangladesh
| |
Collapse
|