1
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
2
|
Wijayanti SD, Tsvik L, Haltrich D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023; 12:3355. [PMID: 37761066 PMCID: PMC10529900 DOI: 10.3390/foods12183355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Food analysis and control are crucial aspects in food research and production in order to ensure quality and safety of food products. Electrochemical biosensors based on enzymes as the bioreceptors are emerging as promising tools for food analysis because of their high selectivity and sensitivity, short analysis time, and high-cost effectiveness in comparison to conventional methods. This review provides the readers with an overview of various electrochemical enzyme-based biosensors in food analysis, focusing on enzymes used for different applications in the analysis of sugars, alcohols, amino acids and amines, and organic acids, as well as mycotoxins and chemical contaminants. In addition, strategies to improve the performance of enzyme-based biosensors that have been reported over the last five years will be discussed. The challenges and future outlooks for the food sector are also presented.
Collapse
Affiliation(s)
- Sudarma Dita Wijayanti
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| |
Collapse
|
3
|
Pilo MI, Baluta S, Loria AC, Sanna G, Spano N. Poly(Thiophene)/Graphene Oxide-Modified Electrodes for Amperometric Glucose Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2840. [PMID: 36014704 PMCID: PMC9413253 DOI: 10.3390/nano12162840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The availability of fast and non-expensive analytical methods for the determination of widespread interest analytes such as glucose is an object of large relevance; this is so not only in the field of analytical chemistry, but also in medicinal and in food chemistry. In this context, electrochemical biosensors have been proposed in different arrangements, according to the mode of electron transfer between the bioreceptor and the electrode. An efficient immobilization of an enzyme on the electrode surface is essential to assure satisfactory analytical performances of the biosensor in terms of sensitivity, limit of detection, selectivity, and linear range of employment. Here, we report the use of a thiophene monomer, (2,5-di(2-thienyl)thieno [3,2-b]thiophene (dTT-bT), as a precursor of an electrogenerated conducting film to immobilize the glucose oxidase (GOx) enzyme on Pt, glassy carbon (GC), and Au electrode surfaces. In addition, the polymer film electrochemically synthetized on a glassy carbon electrode was modified with graphene oxide before the deposition of GOx; the analytical performances of both the arrangements (without and with graphene oxide) in the glucose detection were compared. The biosensor containing graphene oxide showed satisfactory values of linear dynamic range (1.0-10 mM), limit of detection (0.036 mM), and sensitivity (9.4 µA mM-1 cm-2). Finally, it was tested in the determination of glucose in fruit juices; the interference from fructose, saccharose, and ascorbic acid was evaluated.
Collapse
Affiliation(s)
- Maria I. Pilo
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna C. Loria
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Gavino Sanna
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Nadia Spano
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
4
|
Murugan P, Annamalai J, Atchudan R, Govindasamy M, Nallaswamy D, Ganapathy D, Reshetilov A, Sundramoorthy AK. Electrochemical Sensing of Glucose Using Glucose Oxidase/PEDOT:4-Sulfocalix [4]arene/MXene Composite Modified Electrode. MICROMACHINES 2022; 13:mi13020304. [PMID: 35208428 PMCID: PMC8877456 DOI: 10.3390/mi13020304] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Glucose is one of the most important monosaccharides found in the food, as a part of more complex structures, which is a primary energy source for the brain and body. Thus, the monitoring of glucose concentration is more important in food and biological samples in order to maintain a healthy lifestyle. Herein, an electrochemical glucose biosensor was fabricated by immobilization of glucose oxidase (GOX) onto poly(3,4-ethylenedioxythiophene):4-sulfocalix [4]arene (PEDOT:SCX)/MXene modified electrode. For this purpose, firstly, PEDOT was synthesized in the presence of SCX (counterion) by the chemical oxidative method. Secondly, MXene (a 2D layered material) was synthesized by using a high-temperature furnace under a nitrogen atmosphere. After that, PEDOT:SCX/MXene (1:1) dispersion was prepared by ultrasonication which was later utilized to prepare PEDOT:SCX/MXene hybrid film. A successful formation of PEDOT:SCX/MXene film was confirmed by HR-SEM, Fourier transform infrared (FT-IR), and Raman spectroscopies. Due to the biocompatibility nature, successful immobilization of GOX was carried out onto chitosan modified PEDOT:SCX/MXene/GCE. Moreover, the electrochemical properties of PEDOT:SCX/MXene/GOX/GCE was studied through cyclic voltammetry and amperometry methods. Interestingly, a stable redox peak of FAD-GOX was observed at a formal potential of –0.435 V on PEDOT:SCX/MXene/GOX/GCE which indicated a direct electron transfer between the enzyme and the electrode surface. PEDOT:SCX/MXene/GOX/GCE also exhibited a linear response against glucose concentrations in the linear range from 0.5 to 8 mM. The effect of pH, sensors reproducibility, and repeatability of the PEDOT:SCX/MXene/GOX/GCE sensor were studied. Finally, this new biosensor was successfully applied to detect glucose in commercial fruit juice sample with satisfactory recovery.
Collapse
Affiliation(s)
- Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Jayshree Annamalai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mani Govindasamy
- Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City 243, Taiwan;
| | - Deepak Nallaswamy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Centre for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
- Correspondence:
| |
Collapse
|
5
|
Nemiwal M, Zhang TC, Kumar D. Enzyme Immobilized Nanomaterials as Electrochemical Biosensors for Detection of Biomolecules. Enzyme Microb Technol 2022; 156:110006. [DOI: 10.1016/j.enzmictec.2022.110006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/09/2023]
|
6
|
Baluta S, Meloni F, Halicka K, Szyszka A, Zucca A, Pilo MI, Cabaj J. Differential pulse voltammetry and chronoamperometry as analytical tools for epinephrine detection using a tyrosinase-based electrochemical biosensor. RSC Adv 2022; 12:25342-25353. [PMID: 36199318 PMCID: PMC9446417 DOI: 10.1039/d2ra04045j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 12/20/2022] Open
Abstract
The main goal of the presented study was to design a biosensor-based system for epinephrine (EP) detection using a poly-thiophene derivative and tyrosinase as a biorecognition element. We compared two different electroanalytical techniques to select the most prominent technique for analyzing the neurotransmitter. The prepared biosensor system exhibited good parameters; the differential pulse (DPV) technique presented a wide linear range (1–20 μM and 30–200 μM), with a low detection limit (0.18 nM and 1.03 nM). In the case of chronoamperometry (CA), a high signal-to-noise ratio and lower reproducibility were observed, causing a less broad linear range (10–200 μM) and a higher detection limit (125 nM). Therefore, the DPV technique was used for the calculation of sensitivity (0.0011 μA mM−1 cm−2), stability (49 days), and total surface coverage (4.18 × 10−12 mol cm−2). The biosensor also showed very high selectivity in the presence of common interfering species (i.e. ascorbic acid, uric acid, norepinephrine, dopamine) and was successfully applied for EP determination in a pharmaceutical sample. GCE/poly-4,4′-bBT/tyrosinase biosensor for epinephrine was constructed. Comparison of differential pulse voltammetry (DPV) and chronoamperometry was performed. DPV showed more reproducible results giving high selectivity, sensitivity, stability.![]()
Collapse
Affiliation(s)
- Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Francesca Meloni
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Kinga Halicka
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Adam Szyszka
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Antonio Zucca
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Maria Itria Pilo
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
7
|
Perušković DS, Stevanović NR, Kovačević GN, Stanković DM, Lolić AĐ, Baošić RM. Application of
N,N’‐
Bis(acetylacetonato)propylenediimine Copper(II) Complex as Mediator for Glucose Biosensor. ChemistrySelect 2020. [DOI: 10.1002/slct.201904873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Danica S. Perušković
- Department of Analytical ChemistryUniversity of Belgrade - Faculty of Chemistry Studentski trg 12–16 11000 Belgrade Serbia
| | - Nikola R. Stevanović
- Department of Analytical ChemistryUniversity of Belgrade - Faculty of Chemistry Studentski trg 12–16 11000 Belgrade Serbia
| | - Gordana N. Kovačević
- Department of Analytical ChemistryUniversity of Belgrade - Faculty of Chemistry Studentski trg 12–16 11000 Belgrade Serbia
- University of Belgrade - Innovation center of the Faculty of Chemistry Studentski trg 12–16 11000 Belgrade Serbia
| | - Dalibor M. Stanković
- Department of Analytical ChemistryUniversity of Belgrade - Faculty of Chemistry Studentski trg 12–16 11000 Belgrade Serbia
- University of Belgrade - The Vinča Institute of Nuclear Sciences POB 522 11001 Belgrade Serbia
| | - Aleksandar Đ. Lolić
- Department of Analytical ChemistryUniversity of Belgrade - Faculty of Chemistry Studentski trg 12–16 11000 Belgrade Serbia
| | - Rada M. Baošić
- Department of Analytical ChemistryUniversity of Belgrade - Faculty of Chemistry Studentski trg 12–16 11000 Belgrade Serbia
| |
Collapse
|
8
|
Aydın M. A sensitive and selective approach for detection of IL 1α cancer biomarker using disposable ITO electrode modified with epoxy-substituted polythiophene polymer. Biosens Bioelectron 2019; 144:111675. [DOI: 10.1016/j.bios.2019.111675] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/05/2023]
|
9
|
Runsewe D, Betancourt T, Irvin JA. Biomedical Application of Electroactive Polymers in Electrochemical Sensors: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2629. [PMID: 31426613 PMCID: PMC6720215 DOI: 10.3390/ma12162629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Conducting polymers are of interest due to their unique behavior on exposure to electric fields, which has led to their use in flexible electronics, sensors, and biomaterials. The unique electroactive properties of conducting polymers allow them to be used to prepare biosensors that enable real time, point of care (POC) testing. Potential advantages of these devices include their low cost and low detection limit, ultimately resulting in increased access to treatment. This article presents a review of the characteristics of conducting polymer-based biosensors and the recent advances in their application in the recognition of disease biomarkers.
Collapse
Affiliation(s)
- Damilola Runsewe
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Tania Betancourt
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA.
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Jennifer A Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA.
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
10
|
Arango Gutierrez E, Wallraf A, Balaceanu A, Bocola M, Davari MD, Meier T, Duefel H, Schwaneberg U. How to engineer glucose oxidase for mediated electron transfer. Biotechnol Bioeng 2018; 115:2405-2415. [DOI: 10.1002/bit.26785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/12/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Alexandra Balaceanu
- Lehrstuhl für BiotechnologieRWTH Aachen University Aachen Germany
- The Barcelona Institute of Science and TechnologyInstitute for Research in Biomedicine (IRB Barcelona) Barcelona Spain
- Joint BSC‐IRB Research Program in Computational Biology Barcelona Spain
| | - Marco Bocola
- Lehrstuhl für BiotechnologieRWTH Aachen University Aachen Germany
| | - Mehdi D. Davari
- Lehrstuhl für BiotechnologieRWTH Aachen University Aachen Germany
| | - Thomas Meier
- Roche Diagnostics GmbH, Enzyme Technology DXREAF.6164 Penzberg Germany
| | - Hartmut Duefel
- Roche Diagnostics GmbH, Enzyme Technology DXREAF.6164 Penzberg Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für BiotechnologieRWTH Aachen University Aachen Germany
- DWI an der RWTH Aachen e.V. Aachen Germany
| |
Collapse
|