1
|
Zhang SY, Zhang SW, Zhang T, Fan XN, Meng J. Recent advances in functional annotation and prediction of the epitranscriptome. Comput Struct Biotechnol J 2021; 19:3015-3026. [PMID: 34136099 PMCID: PMC8175281 DOI: 10.1016/j.csbj.2021.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
RNA modifications, in particular N6-methyladenosine (m6A), participate in every stages of RNA metabolism and play diverse roles in essential biological processes and disease pathogenesis. Thanks to the advances in sequencing technology, tens of thousands of RNA modification sites can be identified in a typical high-throughput experiment; however, it remains a major challenge to decipher the functional relevance of these sites, such as, affecting alternative splicing, regulation circuit in essential biological processes or association to diseases. As the focus of RNA epigenetics gradually shifts from site discovery to functional studies, we review here recent progress in functional annotation and prediction of RNA modification sites from a bioinformatics perspective. The review covers naïve annotation with associated biological events, e.g., single nucleotide polymorphism (SNP), RNA binding protein (RBP) and alternative splicing, prediction of key sites and their regulatory functions, inference of disease association, and mining the diagnosis and prognosis value of RNA modification regulators. We further discussed the limitations of existing approaches and some future perspectives.
Collapse
Affiliation(s)
- Song-Yao Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teng Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiao-Nan Fan
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Liu Z, Xiao Y, Yin H, Li X, Chen S, Xia K, Zhang L. BDBB: A Novel Beta-distribution-based Biclustering Algorithm for Revealing Local Co-methylation Patterns in Epi-transcriptome Profiling Data. IEEE J Biomed Health Inform 2021; 26:2405-2416. [PMID: 33764880 DOI: 10.1109/jbhi.2021.3068783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
N6-methyladenosine (m6A) has been shown to play crucial roles in RNA metabolism, physiology, and pathological processes. However, the specific regulatory mechanisms of most methylation sites remain uncharted due to the complexity of life processes. Biological experimental methods are costly to solve this problem, and computational methods are relatively lacking. The discovery of local co-methylation patterns (LCPs) of m6A epi-transcriptome data can benefit to solve the above problems. Based on this, we propose a novel biclustering algorithm based on the beta distribution (BDBB), which realizes the mining of LCPs of m6A epi-transcriptome data. BDBB employs the Gibbs sampling method to complete parameter estimation. In the process of modeling, LCPs are recognized as sharp beta distributions compared to the background distribution. Simulation study showed BDBB can extract all the three actual LCPs implanted in the background data and the overlap conditions between them with considerable accuracy (almost close to 100%). On MeRIP-Seq data of 69,446 methylation sites under 32 experimental conditions from 10 human cell lines, BDBB unveiled two LCPs, and Gene Ontology (GO) enrichment analysis showed that they were enriched in histone modification and embryo development, etc. important biological processes respectively. The GOE_Score scoring indicated that the biclustering results of BDBB in the m6A epi-transcriptome data are more biologically meaningful than the results of other biclustering algorithms.
Collapse
|
3
|
Zhen D, Wu Y, Zhang Y, Chen K, Song B, Xu H, Tang Y, Wei Z, Meng J. m 6A Reader: Epitranscriptome Target Prediction and Functional Characterization of N 6-Methyladenosine (m 6A) Readers. Front Cell Dev Biol 2020; 8:741. [PMID: 32850851 PMCID: PMC7431669 DOI: 10.3389/fcell.2020.00741] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
N 6-methyladenosine (m6A) is the most abundant post-transcriptional modification in mRNA, and regulates critical biological functions via m6A reader proteins that bind to m6A-containing transcripts. There exist multiple m6A reader proteins in the human genome, but their respective binding specificity and functional relevance under different biological contexts are not yet fully understood due to the limitation of experimental approaches. An in silico study was devised to unveil the target specificity and regulatory functions of different m6A readers. We established a support vector machine-based computational framework to predict the epitranscriptome-wide targets of six m6A reader proteins (YTHDF1-3, YTHDC1-2, and EIF3A) based on 58 genomic features as well as the conventional sequence-derived features. Our model achieved an average AUC of 0.981 and 0.893 under the full-transcript and mature mRNA model, respectively, marking a substantial improvement in accuracy compared to the sequence encoding schemes tested. Additionally, the distinct biological characteristics of each individual m6A reader were explored via the distribution, conservation, Gene Ontology enrichment, cellular components and molecular functions of their target m6A sites. A web server was constructed for predicting the putative binding readers of m6A sites to serve the research community, and is freely accessible at: http://m6areader.rnamd.com.
Collapse
Affiliation(s)
- Di Zhen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuxuan Wu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuxin Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Kunqi Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Bowen Song
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Haiqi Xu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
4
|
Liu L, Song B, Ma J, Song Y, Zhang SY, Tang Y, Wu X, Wei Z, Chen K, Su J, Rong R, Lu Z, de Magalhães JP, Rigden DJ, Zhang L, Zhang SW, Huang Y, Lei X, Liu H, Meng J. Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Comput Struct Biotechnol J 2020; 18:1587-1604. [PMID: 32670500 PMCID: PMC7334300 DOI: 10.1016/j.csbj.2020.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional RNA modification occurs on all types of RNA and plays a vital role in regulating every aspect of RNA function. Thanks to the development of high-throughput sequencing technologies, transcriptome-wide profiling of RNA modifications has been made possible. With the accumulation of a large number of high-throughput datasets, bioinformatics approaches have become increasing critical for unraveling the epitranscriptome. We review here the recent progress in bioinformatics approaches for deciphering the epitranscriptomes, including epitranscriptome data analysis techniques, RNA modification databases, disease-association inference, general functional annotation, and studies on RNA modification site prediction. We also discuss the limitations of existing approaches and offer some future perspectives.
Collapse
Affiliation(s)
- Lian Liu
- School of Computer Sciences, Shannxi Normal University, Xi’an, Shaanxi 710119, China
| | - Bowen Song
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Jiani Ma
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Yi Song
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Song-Yao Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Xiangyu Wu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Kunqi Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Jionglong Su
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Rong Rong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Zhiliang Lu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - João Pedro de Magalhães
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Shao-Wu Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiujuan Lei
- School of Computer Sciences, Shannxi Normal University, Xi’an, Shaanxi 710119, China
| | - Hui Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|
5
|
Wu X, Wei Z, Chen K, Zhang Q, Su J, Liu H, Zhang L, Meng J. m6Acomet: large-scale functional prediction of individual m 6A RNA methylation sites from an RNA co-methylation network. BMC Bioinformatics 2019; 20:223. [PMID: 31046660 PMCID: PMC6498663 DOI: 10.1186/s12859-019-2840-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Over one hundred different types of post-transcriptional RNA modifications have been identified in human. Researchers discovered that RNA modifications can regulate various biological processes, and RNA methylation, especially N6-methyladenosine, has become one of the most researched topics in epigenetics. Results To date, the study of epitranscriptome layer gene regulation is mostly focused on the function of mediator proteins of RNA methylation, i.e., the readers, writers and erasers. There is limited investigation of the functional relevance of individual m6A RNA methylation site. To address this, we annotated human m6A sites in large-scale based on the guilt-by-association principle from an RNA co-methylation network. It is constructed based on public human MeRIP-Seq datasets profiling the m6A epitranscriptome under 32 independent experimental conditions. By systematically examining the network characteristics obtained from the RNA methylation profiles, a total of 339,158 putative gene ontology functions associated with 1446 human m6A sites were identified. These are biological functions that may be regulated at epitranscriptome layer via reversible m6A RNA methylation. The results were further validated on a soft benchmark by comparing to a random predictor. Conclusions An online web server m6Acomet was constructed to support direct query for the predicted biological functions of m6A sites as well as the sites exhibiting co-methylated patterns at the epitranscriptome layer. The m6Acomet web server is freely available at: www.xjtlu.edu.cn/biologicalsciences/m6acomet. Electronic supplementary material The online version of this article (10.1186/s12859-019-2840-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China.,Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, UK
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China.,Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, UK
| | - Kunqi Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China.,Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, UK
| | - Qing Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China.,Present address: Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Jionglong Su
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Hui Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China.
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China. .,Institute of Integrative Biology, University of Liverpool, L7 8TX, Liverpool, UK.
| |
Collapse
|
6
|
Zhang T, Zhang SW, Zhang L, Meng J. trumpet: transcriptome-guided quality assessment of m 6A-seq data. BMC Bioinformatics 2018; 19:260. [PMID: 30001693 PMCID: PMC6044007 DOI: 10.1186/s12859-018-2266-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/03/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Methylated RNA immunoprecipitation sequencing (MeRIP-seq or m6A-seq) has been extensively used for profiling transcriptome-wide distribution of RNA N6-Methyl-Adnosine methylation. However, due to the intrinsic properties of RNA molecules and the intricate procedures of this technique, m6A-seq data often suffer from various flaws. A convenient and comprehensive tool is needed to assess the quality of m6A-seq data to ensure that they are suitable for subsequent analysis. RESULTS From a technical perspective, m6A-seq can be considered as a combination of ChIP-seq and RNA-seq; hence, by effectively combing the data quality assessment metrics of the two techniques, we developed the trumpet R package for evaluation of m6A-seq data quality. The trumpet package takes the aligned BAM files from m6A-seq data together with the transcriptome information as the inputs to generate a quality assessment report in the HTML format. CONCLUSIONS The trumpet R package makes a valuable tool for assessing the data quality of m6A-seq, and it is also applicable to other fragmented RNA immunoprecipitation sequencing techniques, including m1A-seq, CeU-Seq, Ψ-seq, etc.
Collapse
Affiliation(s)
- Teng Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, 710027 Shaanxi China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, 710027 Shaanxi China
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116 Jiangsu China
| | - Jia Meng
- Department of Biological Sciences, Research Center for Precision Medicine, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 Jiangsu China
- Institute of Integrative Biology, University of Liverpool, L7 8TX, Liverpool, UK
| |
Collapse
|