1
|
Turk H, Temiz E, Koyuncu I. Metabolic reprogramming in sepsis-associated acute kidney injury: insights from lipopolysaccharide-induced oxidative stress and amino acid dysregulation. Mol Biol Rep 2024; 52:52. [PMID: 39680269 DOI: 10.1007/s11033-024-10175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) stands out as a critical health issue due to its high mortality and morbidity rates. This study aimed to comprehensively investigate the biochemical and metabolic alterations induced by lipopolysaccharide (LPS) in human embryonic kidney cells (HEK-293) using an in vitro model. METHODS AND RESULTS The study investigated the impact of LPS on HEK-293 cells by evaluating cytotoxicity using the MTT assay, analyzing apoptosis, cell cycle progression, and oxidative stress via flow cytometry, measuring TNF-α levels through ELISA, and assessing amino acid metabolism with LC-MS/MS. The findings demonstrated that LPS significantly reduced cell viability in a dose-dependent manner, increased apoptotic cell populations, induced DNA damage by arresting the cell cycle in the Sub-G1 phase, and activated oxidative stress pathways. Notably, elevated reactive oxygen species (ROS) production and increased secretion of the pro-inflammatory cytokine TNF-α highlighted LPS's inflammatory and cytotoxic effects. Furthermore, systematic analysis revealed LPS-induced disruptions in amino acid metabolism, including marked reductions in alanine, arginine, and aspartic acid levels. KEGG pathway analysis identified significant metabolic alterations in pathways such as the urea cycle, TCA cycle, and glutathione metabolism. Interestingly, elevated citrulline levels suggested a potential adaptive mechanism to counteract LPS-induced inflammation and oxidative stress. Additionally, ROC analysis identified cystine as a highly reliable biomarker, with an AUC value of 1.00, emphasizing its critical role in metabolic reprogramming associated with SA-AKI. CONCLUSIONS This study provides critical insights into the molecular pathophysiology of SA-AKI and emphasizes the promise of metabolomic approaches in the early diagnosis of sepsis-related complications and the development of targeted therapies.
Collapse
Affiliation(s)
- Hakan Turk
- Department of Urology, Usak Private Oztan Hospital, Usak, Turkey.
| | - Ebru Temiz
- Departments of Endocrinology, Diabetes and Nutrition Center, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Medical Promotion and Marketing Program, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Ismail Koyuncu
- Departments of Medical Biochemistry, Faculty of Medicine; Science and Technology Application and Research Center, Harran University, Sanliurfa, Turkey
| |
Collapse
|
2
|
Motamed Nia V, Rezaei N, Shokati Sayyad M, Seyedabadi M, Talebpour Amiri F, Shaki F. The Protective Effects of Citrulline on Testicular Injury Induced by Torsion and Detorsion in Adult Male Rats: An Experimental Study. J Reprod Infertil 2024; 25:201-210. [PMID: 39830325 PMCID: PMC11736274 DOI: 10.18502/jri.v25i3.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/18/2024] [Indexed: 01/22/2025] Open
Abstract
Background Testicular torsion is a critical urological emergency that can lead to testicular ischemia and significant tissue damage. Citrulline, a supplement known for enhancing cellular metabolism and mitigating oxidative stress and inflammation, has been explored for its protective effects against testicular injury resulting from torsion and detorsion in rat models. Methods This study involved 42 Wistar rats, divided into six groups: Sham, torsion/detorsion (T/D), and four groups receiving varying doses of Citrulline (300, 600, 900 mg/kg) and vitamin E (20 mg/kg). A surgical procedure was performed to induce torsion by rotating the left testicle for 4 hr, followed by reperfusion. Daily oral administration of the supplements continued for one week post-surgery. Assessments included oxidative stress markers, apoptosis, inflammation, pathology, and sperm parameters. Statistical analysis was conducted using GraphPad Prism. Results Citrulline administration at doses of 600 and 900 mg/kg significantly reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels. Additionally, it increased glutathione (GSH) levels and decreased protein carbonyl levels at the 900 mg/kg dose. The expression of interleukin-6 (IL-6) decreased at 900 mg/kg, tumor necrosis factor-alpha (TNF-α) levels dropped at 600 and 900 mg/kg, and the pro-apoptotic factor Bax was reduced at all doses. Sperm analysis showed improved sperm count and motility at the 900 mg/kg dose. Histological examination revealed significant positive effects of Citrulline on testicular tissue. Conclusion Citrulline effectively lowers oxidative stress, inflammation, while enhancing sperm quality and pathological outcomes. These results indicate that Citrulline has potential as a therapeutic agent for testicular torsion.
Collapse
Affiliation(s)
- Vida Motamed Nia
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nastaran Rezaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokati Sayyad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Xue Y, Zhang Y, Chen L, Wang Y, Lv Z, Yang LQ, Li S. Citrulline protects against LPS‑induced acute lung injury by inhibiting ROS/NLRP3‑dependent pyroptosis and apoptosis via the Nrf2 signaling pathway. Exp Ther Med 2022; 24:632. [PMID: 36160882 PMCID: PMC9468793 DOI: 10.3892/etm.2022.11569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with sepsis and is accompanied by high mortality. The present study aimed to investigate if the organic compound citrulline has a protective against lipopolysaccharide (LPS)-stimulated ALI and its potential mechanisms. ALI was induced in mice by intraperitoneal (i.p.) injection of LPS (10 mg/kg). Citrulline (1 g/kg/day) was administrated i.p. 7 days prior to LPS injection. Mouse lung vascular endothelial cells (MLVECs) were divided into five groups: Control, LPS, LPS + Cit, LPS + N-acetyl-L-cysteine (NAC) and LPS + Cit + ML385. Lung injury was determined by morphology changes. Apoptosis and pyroptosis were detected using western blot analysis and immunofluorescence. The present results indicated that citrulline can significantly attenuate ALI. Citrulline pretreatment decreased the expression of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and decreased pyroptosis and apoptosis. Intervention with the total reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine attenuated NLRP3 inflammasome-associated pyroptosis and apoptosis in LPS-treated MLVECs. Citrulline pretreatment inhibited pyroptotic cell death and apoptosis induced by LPS. Citrulline decreased accumulation of intracellular ROS and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Furthermore, the Nrf2 inhibitor ML385 reversed ROS generation, NLRP3 inflammasome-mediated pyroptosis and apoptosis suppressed by citrulline. In summary, the present data demonstrated that citrulline may confer protection against ALI via inhibition of ROS/NLRP3 inflammasome-dependent pyroptosis and apoptosis via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yao Xue
- Department of Anesthesiology, The Affiliated Shenmu Hospital of Northwest University, Shenmu, Shaanxi 719300, P.R. China
| | - Yunqian Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Li Chen
- Department of Anesthesiology, Suqian Hospital of Nanjing Drum‑Tower Hospital Group, Suqian, Jiangsu 223865, P.R. China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhou Lv
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Li-Qiao Yang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Siyuan Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
4
|
Topcu A, Kostakoglu U, Mercantepe T, Yilmaz HK, Tumkaya L, Uydu HA. The cardioprotective effects of perindopril in a model of polymicrobial sepsis: The role of radical oxygen species and the inflammation pathway. J Biochem Mol Toxicol 2022; 36:e23080. [PMID: 35417068 DOI: 10.1002/jbt.23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
Mortality rates associated with myocardial dysfunction due to sepsis and septic shock are generally high across the world. The present study focused on the antioxidant and anti-inflammatory effects of perindopril (PER) for the purpose of preventing the adverse effects of sepsis on the myocardium and developing new alternatives in treatment. The control group received only saline solution via the oral route for 4 days. The second group underwent cecal ligation puncture (CLP), and the third underwent CLP and received PER (2 mg/kg). Rats in the third group received 2 mg/kg PER per oral (p.o.) from 4 days before induction of sepsis. Thiobarbituric acid reactive species (TBARS), total thiol (-SH), interleukin-1 beta (IL-1β), IL-6, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB/p65) levels increased in the CLP groups. In contrast, PER (2 mg/kg) decreased the levels of biochemical parameters other than total-SH and decreased 8-OHdG, NF-κB/p65 immunopositivity in rat heart tissues. The data from this study show that impairment of the oxidant/antioxidant balance and inflammatory cytokine levels in favor of inflammation in heart tissue under septic conditions results in severe tissue damage. PER administration before sepsis was shown to exhibit antioxidant and anti-inflammatory properties by reducing these effects. This in turn increased the importance of PER as new evidence of its protective effects in heart tissue.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ugur Kostakoglu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hulya K Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Huseyin A Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
5
|
Jafari-Khataylou Y, Emami SJ, Mirzakhani N. Troxerutin attenuates inflammatory response in lipopolysaccharide-induced sepsis in mice. Res Vet Sci 2020; 135:469-478. [PMID: 33261826 DOI: 10.1016/j.rvsc.2020.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
Troxerutin (Tx), known as vitamin P4 is a derivative of natural bioflavonoid rutin. Tx possesses different biological activities such as antioxidant, anticancer, and anti-inflammatory. The current study was conducted to determine potential therapeutic effect of Tx in lipopolysaccharides (LPS)-induced sepsis in mice. In LPS-induced sepsis, the mice were treated intraperitoneally (ip) with Tx twice daily. Therapeutic effect was assessed by measuring serum level of cytokines, alanine aminotransferase (ALT) and lactate dehydrogenase (LDH). Level of nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), Myeloperoxidase (MPO) and Malondialdehyde (MDA) was measured. Expression of CD40 receptor on leucocytes was measured using flowcytometry. Splenocyte proliferation was evaluated using MTT assay. The effect of Tx on survival rate during administration of lethal dose of LPS was investigated. The results showed that Tx inhibited LPS induced NO production. Inflammatory pathways were suppressed by reduction of inflammatory cytokines production. Further, elevated CD40 expression of leucocytes and proliferation of splenocytes markedly reduced in Tx treated group. Antioxidant defense system was enhanced by increased activity of SOD and CAT and decreased level of MDA. MPO, ALT and LDH activity. Additionally, treatment with Tx significantly increased the mean survival time of mice compared with the LPS treated group. Histologically, Tx treatment decreased inflammatory cells infiltration and histopathologicl changes in the liver. Our findings showed that reduced inflammatory parameters, improved antioxidant activity, reduced histological lesions and increased survival rate. These findings suggest that Tx is an effective anti-inflammatory agent for the treatment of LPS-induced sepsis.
Collapse
Affiliation(s)
- Yaser Jafari-Khataylou
- Assistant Professor of Immunology, Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Seyyed Jamal Emami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Navideh Mirzakhani
- Assistant Professor of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|