1
|
Akama Y, Murao A, Aziz M, Wang P. Extracellular CIRP induces CD4CD8αα intraepithelial lymphocyte cytotoxicity in sepsis. Mol Med 2024; 30:17. [PMID: 38302880 PMCID: PMC10835974 DOI: 10.1186/s10020-024-00790-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND In sepsis, intestinal barrier dysfunction is often caused by the uncontrolled death of intestinal epithelial cells (IECs). CD4CD8αα intraepithelial lymphocytes (IELs), a subtype of CD4+ T cells residing within the intestinal epithelium, exert cytotoxicity by producing granzyme B (GrB) and perforin (Prf). Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently identified alarmin which stimulates TLR4 on immune cells to induce proinflammatory responses. Here, we hypothesized that eCIRP enhances CD4CD8αα IEL cytotoxicity and induces IEC death in sepsis. METHODS We subjected wild-type (WT) and CIRP-/- mice to sepsis by cecal ligation and puncture (CLP) and collected the small intestines to isolate IELs. The expression of GrB and Prf in CD4CD8αα IELs was assessed by flow cytometry. IELs isolated from WT and TLR4-/- mice were challenged with recombinant mouse CIRP (eCIRP) and assessed the expression of GrB and Prf in CD4CD8αα by flow cytometry. Organoid-derived IECs were co-cultured with eCIRP-treated CD4CD8αα cells in the presence/absence of GrB and Prf inhibitors and assessed IEC death by flow cytometry. RESULTS We found a significant increase in the expression of GrB and Prf in CD4CD8αα IELs of septic mice compared to sham mice. We found that GrB and Prf levels in CD4CD8αα IELs were increased in the small intestines of WT septic mice, while CD4CD8αα IELs of CIRP-/- mice did not show an increase in those cytotoxic granules after sepsis. We found that eCIRP upregulated GrB and Prf in CD4CD8αα IELs isolated from WT mice but not from TLR4-/- mice. Furthermore, we also revealed that eCIRP-treated CD4CD8αα cells induced organoid-derived IEC death, which was mitigated by GrB and Prf inhibitors. Finally, histological analysis of septic mice revealed that CIRP-/- mice were protected from tissue injury and cell death in the small intestines compared to WT mice. CONCLUSION In sepsis, the cytotoxicity initiated by the eCIRP/TLR4 axis in CD4CD8αα IELs is associated with intestinal epithelial cell (IEC) death, which could lead to gut injury.
Collapse
Affiliation(s)
- Yuichi Akama
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
2
|
Shi R, Zhou X, Pang L, Wang M, Li Y, Chen C, Ning H, Zhang L, Yue G, Qiu L, Zhao W, Qi Y, Wu Y, Gao Y. Peptide vaccine from cancer-testis antigen ODF2 can potentiate the cytotoxic T lymphocyte infiltration through IL-15 in non-MSI-H colorectal cancer. Cancer Immunol Immunother 2023; 72:985-1001. [PMID: 36251028 DOI: 10.1007/s00262-022-03307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 03/20/2023]
Abstract
About 85% of patients with colorectal cancer (CRC) have the non-microsatellite instability-high (non-MSI-H) subtype, and many cannot benefit from immune checkpoint blockade. A potential reason for this is that most non-MSI-H colorectal cancers are immunologically "cold" due to poor CD8+ T cell infiltration. In the present study, we screened for potential cancer-testis antigens (CTAs) by comparing the bioinformatics of CD8+ T effector memory (Tem) cell infiltration between MSI-H and non-MSI-H CRC. Two ODF2-derived epitope peptides, P433 and P609, displayed immunogenicity and increased the proportion of CD8+ T effector memory (Tem) cells in vitro and in vivo. The adoptive transfer of peptide pool-induced CTLs inhibited tumor growth and enhanced CD8+ T cell infiltration in tumor-bearing NOD/SCID mice. The mechanistic study showed that knockdown of ODF2 in CRC cells promoted interleukin-15 expression, which facilitated CD8+ T cell proliferation. In conclusion, ODF2, a CTA, was negatively correlated with CD8+ T cell infiltration in "cold" non-MSI-H CRC and was selected based on the results of bioinformatics analyses. The corresponding HLA-A2 restricted epitope peptide induced antigen-specific CTLs. Immunotherapy targeting ODF2 could improve CTA infiltration via upregulating IL-15 in non-MSI-H CRC. This tumor antigen screening strategy could be exploited to develop therapeutic vaccines targeting non-MSI-H CRC.
Collapse
Affiliation(s)
- Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihan Zhang
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Guangxing Yue
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China.
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Wang Z, Ran L, Chen C, Shi R, Dong Y, Li Y, Zhou X, Qi Y, Zhu P, Gao Y, Wu Y. Identification of HLA-A2-Restricted Mutant Epitopes from Neoantigens of Esophageal Squamous Cell Carcinoma. Vaccines (Basel) 2021; 9:vaccines9101118. [PMID: 34696226 PMCID: PMC8541546 DOI: 10.3390/vaccines9101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the deadliest gastrointestinal cancers, has had limited effective therapeutic strategies up to now. Accumulating evidence suggests that effective immunotherapy in cancer patients has been associated with T cells responsive to mutant peptides derived from neoantigens. Here, we selected 35 human leukocyte antigen-A2 (HLA-A2)-restricted mutant (MUT) peptides stemmed from neoantigens of ESCC. Among them, seven mutant peptides had potent binding affinity to HLA-A*0201 molecules and could form a stable peptide/HLA-A*0201 complex. Three mutant peptides (TP53-R267P, NFE2L2-D13N, and PCLO-E4090Q) of those were immunogenic and could induce the cytotoxic T lymphocytes (CTLs) recognizing mutant peptides presented on transfected cells in an HLA-A2-restricted and MUT peptide-specific manner. In addition, the CTL response in immunized HLA-A2.1/Kb transgenic (Tg) mice was enhanced by coupling MUT peptides to peptide WH, a peptide delivery carrier targeting Clec9a+ DCs. Then, the possible binding model conversions between the WT and MUT candidate peptides were analyzed by docking with the pockets of HLA-A*0201 molecule. We therefore propose a novel strategy and epitopes for immunotherapy of ESCC based on neoantigens.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Ling Ran
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Yu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Yubing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510080, China
- Correspondence: (Y.G.); (Y.W.); Tel./Fax: +86-371-6778-3235 (Y.W.)
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.G.); (Y.W.); Tel./Fax: +86-371-6778-3235 (Y.W.)
| |
Collapse
|
4
|
Identification of CTL Epitopes on Efflux Pumps of the ATP-Binding Cassette and the Major Facilitator Superfamily of Mycobacterium tuberculosis. J Immunol Res 2021; 2021:8899674. [PMID: 33490292 PMCID: PMC7803423 DOI: 10.1155/2021/8899674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis is the world's most deadly infectious disease, with 10 million people falling ill and 1.5 million people dying from the disease every year. With the increasing number of drug-resistant Mycobacterium tuberculosis (MTB) strains and prevalence of coinfection of MTB with human immunodeficiency virus, many challenges remain in the prevention and treatment of tuberculosis. Therefore, the development of safe and effective tuberculosis vaccines is an urgent issue. In this study, we identified cytotoxic T lymphocyte epitopes on drug resistance-associated membrane protein efflux pumps of MTB, the ATP-binding cassette and the major facilitator superfamilies. First, three online software were used to predict HLA-A2-restricted epitopes. Then, the candidate epitopes were confirmed with the T2A2 cell binding affinity and peptide/MHC (pMHC) complex stability assays and in vitro immune activity experiments. Two drug-resistant T lymphocyte epitopes, designated Rv1218c-p24 and Rv2477c-p182, were selected, and their immunogenic activities studied in vivo in genetically engineered mice. The immune activities of these two epitopes were improved with the help of complete Freund's adjuvant (CFA). The epitopes identified here provide a foundation for the diagnosis and treatment of patients infected with drug resistant and the future development of a multiepitope vaccine.
Collapse
|
5
|
Meng Q, Wu Y, Sui X, Meng J, Wang T, Lin Y, Wang Z, Zhou X, Qi Y, Du J, Gao Y. POTN: A Human Leukocyte Antigen-A2 Immunogenic Peptides Screening Model and Its Applications in Tumor Antigens Prediction. Front Immunol 2020; 11:02193. [PMID: 33133063 PMCID: PMC7579403 DOI: 10.3389/fimmu.2020.02193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
Whole genome/exome sequencing data for tumors are now abundant, and many tumor antigens, especially mutant antigens (neoantigens), have been identified for cancer immunotherapy. However, only a small fraction of the peptides from these antigens induce cytotoxic T cell responses. Therefore, efficient methods to identify these antigenic peptides are crucial. The current models of major histocompatibility complex (MHC) binding and antigenic prediction are still inaccurate. In this study, 360 9-mer peptides with verified immunological activity were selected to construct a prediction of tumor neoantigen (POTN) model, an immunogenic prediction model specifically for the human leukocyte antigen-A2 allele. Based on the physicochemical properties of amino acids, such as the residue propensity, hydrophobicity, and organic solvent/water, we found that the predictive capability of POTN is superior to that of the prediction programs SYPEITHI, IEDB, and NetMHCpan 4.0. We used POTN to screen peptides for the cancer-testis antigen located on the X chromosome, and we identified several peptides that may trigger immunogenicity. We synthesized and measured the binding affinity and immunogenicity of these peptides and found that the accuracy of POTN is higher than that of NetMHCpan 4.0. Identifying the properties related to the T cell response or immunogenicity paves the way to understanding the MHC/peptide/T cell receptor complex. In conclusion, POTN is an efficient prediction model for screening high-affinity immunogenic peptides from tumor antigens, and thus provides useful information for developing cancer immunotherapy.
Collapse
Affiliation(s)
- Qingqing Meng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jingjie Meng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tingting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Lin
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|