1
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
2
|
Conde CI, Lang C, Baumann CR, Easthope CA, Taylor WR, Ravi DK. Triggers for freezing of gait in individuals with Parkinson's disease: a systematic review. Front Neurol 2023; 14:1326300. [PMID: 38187152 PMCID: PMC10771308 DOI: 10.3389/fneur.2023.1326300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Background Freezing of Gait (FOG) is a motor symptom frequently observed in advanced Parkinson's disease. However, due to its paroxysmal nature and diverse presentation, assessing FOG in a clinical setting can be challenging. Before FOG can be fully investigated, it is critical that a reliable experimental setting is established in which FOG can be evoked in a standardized manner, but the efficacy of various gait tasks and triggers for eliciting FOG remains unclear. Objectives This study aimed to conduct a systematic review of the existing literature and evaluate the available evidence for the relationship between specific motor tasks, triggers, and FOG episodes in individuals with Parkinson's disease (PwPD). Methods We conducted a literature search on four online databases (PubMed, Web of Science, EMBASE, and Cochrane Library) using the keywords "Parkinson's disease," "Freezing of Gait", "triggers" and "tasks". A total of 128 articles met the inclusion criteria and were included in our analysis. Results The review found that a wide range of gait tasks were employed in studies assessing FOG among PD patients. However, three tasks (turning, dual tasking, and straight walking) emerged as the most frequently used. Turning (28%) appears to be the most effective trigger for eliciting FOG in PwPD, followed by walking through a doorway (14%) and dual tasking (10%). Conclusion This review thereby supports the utilisation of turning, especially a 360-degree turn, as a reliable trigger for FOG in PwPD. This finding could be beneficial to clinicians conducting clinical evaluations and researchers aiming to assess FOG in a laboratory environment.
Collapse
Affiliation(s)
| | - Charlotte Lang
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Christian R. Baumann
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland
- The LOOP Zurich – Medical Research Center, Zürich, Switzerland
| | - Chris A. Easthope
- The LOOP Zurich – Medical Research Center, Zürich, Switzerland
- Lake Lucerne Institute, Vitznau, Switzerland
- creneo Foundation – Center for Interdisciplinary Research, Vitznau, Switzerland
| | - William R. Taylor
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- The LOOP Zurich – Medical Research Center, Zürich, Switzerland
| | - Deepak K. Ravi
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Cockx HM, Lemmen EM, van Wezel RJA, Cameron IGM. The effect of doorway characteristics on freezing of gait in Parkinson's disease. Front Neurol 2023; 14:1265409. [PMID: 38111795 PMCID: PMC10726031 DOI: 10.3389/fneur.2023.1265409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Background Freezing of gait is a debilitating symptom in Parkinson's disease, during which a sudden motor block prevents someone from moving forward. Remarkably, doorways can provoke freezing. Most research has focused on the influence of doorway width, and little is known about other doorway characteristics influencing doorway freezing. Objective Firstly, to provide guidelines on how to design doorways for people with freezing. Secondly, to compare people with doorway freezing to people without doorway freezing, and to explore the underlying mechanisms of doorway freezing. Methods We designed a web-based, structured survey consisting of two parts. Part I (n = 171 responders), open to people with Parkinson's disease with freezing in general, aimed to compare people with doorway freezing to people without doorway freezing. We explored underlying processes related to doorway freezing with the Gait-Specific Attention Profile (G-SAP), inquiring about conscious movement processes occurring during doorway passing. Part II (n = 60), open for people experiencing weekly doorway freezing episodes, inquired about the influence of specific doorway characteristics on freezing. Results People with doorway freezing (69% of Part I) had higher freezing severity, longer disease duration, and scored higher on all sub scores of the G-SAP (indicating heightened motor, attentional, and emotional thoughts when passing through doorways) than people without doorway freezing. The main categories provoking doorway freezing were: dimensions of the door and surroundings, clutter around the door, lighting conditions, and automatic doors. Conclusion We provide recommendations on how to maximally avoid freezing in a practical setting. Furthermore, we suggest that doorways trigger freezing based on visuomotor, attentional, and emotional processes.
Collapse
Affiliation(s)
- Helena M. Cockx
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eefke M. Lemmen
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Richard J. A. van Wezel
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, Netherlands
| | - Ian G. M. Cameron
- Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, Netherlands
- OnePlanet Research Center, Nijmegen, Netherlands
- Faculty of Science, Education Center, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
4
|
Craig CM, Stafford J, Egorova A, McCabe C, Matthews M. Can We Use the Oculus Quest VR Headset and Controllers to Reliably Assess Balance Stability? Diagnostics (Basel) 2022; 12:diagnostics12061409. [PMID: 35741219 PMCID: PMC9221913 DOI: 10.3390/diagnostics12061409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Balance is the foundation upon which all other motor skills are built. Indeed, many neurological diseases and injuries often present clinically with deficits in balance control. With recent advances in virtual reality (VR) hardware bringing low-cost headsets into the mainstream market, the question remains as to whether this technology could be used in a clinical context to assess balance. We compared the head tracking performance of a low-cost VR headset (Oculus Quest) with a gold standard motion tracking system (Qualisys). We then compared the recorded head sway with the center of pressure (COP) measures collected from a force platform in different stances and different visual field manipulations. Firstly, our analysis showed that there was an excellent correspondence between the two different head movement signals (ICCs > 0.99) with minimal differences in terms of accuracy (<5 mm error). Secondly, we found that head sway mapped onto COP measures more strongly when the participant adopted a Tandem stance during balance assessment. Finally, using the power of virtual reality to manipulate the visual input to the brain, we showed how the Oculus Quest can reliably detect changes in postural control as a result of different types of visual field manipulations. Given the high levels of accuracy of the motion tracking of the Oculus Quest headset, along with the strong relationship with the COP and ability to manipulate the visual field, the Oculus Quest makes an exciting alternative to traditional lab-based balance assessments.
Collapse
Affiliation(s)
- Cathy M. Craig
- School of Psychology, Ulster University, Coleraine BT52 1SL, UK
- Correspondence:
| | - James Stafford
- School of Psychology, Queen’s University Belfast, Belfast BT7 1NN, UK;
| | - Anastasiia Egorova
- School of Maths & Physics, Queen’s University Belfast, Belfast BT7 1NN, UK;
| | - Carla McCabe
- School of Sport, Ulster University, Belfast BT15 1ED, UK; (C.M.); (M.M.)
| | - Mark Matthews
- School of Sport, Ulster University, Belfast BT15 1ED, UK; (C.M.); (M.M.)
| |
Collapse
|
5
|
Thangavelu K, Hayward JA, Pachana NA, Byrne GJ, Mitchell LK, Wallis GM, Au TR, Dissanayaka NN. Designing Virtual Reality Assisted Psychotherapy for Anxiety in Older Adults Living with Parkinson's Disease: Integrating Literature for Scoping. Clin Gerontol 2022; 45:235-251. [PMID: 31903862 DOI: 10.1080/07317115.2019.1709597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: This review integrates literature to discuss the potential use of virtual reality (VR) in treatment of anxiety in Parkinson's disease (PD) and inform next steps.Methods: A systematic search was performed to identify studies of VR use in PD, using four databases. Data were reported in accordance to the Preferred Reporting Items for Systematic reviews and Meta-Analyzes extension for Scoping Reviews (PRISMA-ScR).Results: Thirty-two studies met the inclusion criteria with four VR studies from the same study group directly assessing the effects of anxiety on motor symptoms in PD. Primary studies implementing a VR protocol in PD identified focus areas of understanding and alleviating freezing of gait (FOG), balance training, and cognitive and motor rehabilitation, and informed design considerations.Conclusion: VR in PD studies suggested established feasibility. With appropriate design considerations, a VR based protocol could improve anxiety outcomes in PD.Clinical implications: VR in PD provides control of a patient's field of view, which can be exploited to induce specific responses, provide visual feedback, analysis of patient actions, and introduce safe challenges in the context of training. VR assisted Cognitive Behavioral Therapy (CBT) tailored to suit subtypes of anxiety disorders in PD have the potential to improve the efficacy and effectiveness of psychotherapy in PD.
Collapse
Affiliation(s)
- Karthick Thangavelu
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Joshua A Hayward
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Nancy A Pachana
- School of Psychology, The University of Queensland, Brisbane, Australia
| | - Gerard J Byrne
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Mental Health Service, Royal Brisbane & Woman's Hospital, Brisbane, Australia
| | | | - Guy M Wallis
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Tiffany R Au
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Nadeeka N Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,School of Psychology, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane & Woman's Hospital, Brisbane, Australia
| |
Collapse
|
6
|
Song W, Raza HK, Lu L, Zhang Z, Zu J, Zhang W, Dong L, Xu C, Gong X, Lv B, Cui G. Functional MRI in Parkinson's disease with freezing of gait: a systematic review of the literature. Neurol Sci 2021; 42:1759-1771. [PMID: 33713258 DOI: 10.1007/s10072-021-05121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Freezing of gait (FOG), a common and disabling symptom of Parkinson's disease (PD), is characterized by an episodic inability to generate effective stepping. Functional MRI (fMRI) has been used to evaluate abnormal brain connectivity patterns at rest and brain activation patterns during specific tasks in patients with PD-FOG. This review has examined the existing functional neuroimaging literature in PD-FOG, including those with treatment. Summarizing these articles provides an opportunity for a better understanding of the underlying pathophysiology in PD-FOG. METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a literature review of studies using fMRI to investigate the underlying pathophysiological mechanisms of PD-FOG. RESULTS We initially identified 201 documents. After excluding the duplicates, reviews, and other irrelevant articles, 39 articles were finally identified, including 18 task-based fMRI studies and 21 resting-state fMRI studies. CONCLUSIONS Studies using fMRI techniques to evaluate PD-FOG have found dysfunctional connectivity in widespread cortical and subcortical regions. Standardized imaging protocols and detailed subtypes of PD-FOG are furthered required to elucidate current findings.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Hafiz Khuram Raza
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Li Lu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Xiangyao Gong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Bingchen Lv
- Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China.
| |
Collapse
|
7
|
Ehgoetz Martens KA, Peterson DS, Almeida QJ, Lewis SJG, Hausdorff JM, Nieuwboer A. Behavioural manifestations and associated non-motor features of freezing of gait: A narrative review and theoretical framework. Neurosci Biobehav Rev 2020; 116:350-364. [PMID: 32603716 DOI: 10.1016/j.neubiorev.2020.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
Over the past decade, non-motor related symptoms and provocative contexts have offered unique opportunities to gain insight into the potential mechanisms that may underpin freezing of gait (FOG) in Parkinson's disease (PD). While this large body of work has informed several theoretical models, to date, few are capable of explaining behavioural findings across multiple domains (i.e. cognitive, sensory-perceptual and affective) and in different behavorial contexts. As such, the exact nature of these interrelationships and their neural basis remain quite enigmatic. Here, the non-motor, behavioural evidence for cognitive, sensory-perceptual and affective contributors to FOG are reviewed and synthesized by systematically examining (i) studies that manipulated contextual environments that provoke freezing of gait, (ii) studies that uncovered factors that have been proposed to contribute to freezing, and (iii) studies that longitudinally tracked factors that predict the future development of freezing of gait. After consolidating the evidence, we offer a novel perspective for integrating these multi-faceted behavioural patterns and identify key challenges that warrant consideration in future work.
Collapse
Affiliation(s)
| | - Daniel S Peterson
- College of Health Solutions, Arizona State University, Arizona, USA; Phoenix Veterans Affairs Medical Centre, Arizona, USA
| | - Quincy J Almeida
- Movement Disorders Research & Rehabilitation Centre, Laurier University, Waterloo, ON, Canada
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Dept of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Alice Nieuwboer
- Department of Rehabilitation Science, University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Fonoff ET, de Lima-Pardini AC, Coelho DB, Monaco BA, Machado B, Pinto de Souza C, Dos Santos Ghilardi MG, Hamani C. Spinal Cord Stimulation for Freezing of Gait: From Bench to Bedside. Front Neurol 2019; 10:905. [PMID: 31507514 PMCID: PMC6718563 DOI: 10.3389/fneur.2019.00905] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Spinal cord stimulation (SCS) has been used for the treatment of chronic pain for nearly five decades. With a high degree of efficacy and a low incidence of adverse events, it is now considered to be a suitable therapeutic alternative in most guidelines. Experimental studies suggest that SCS may also be used as a therapy for motor and gait dysfunction in parkinsonian states. The most common and disabling gait dysfunction in patients with Parkinson's disease (PD) is freezing of gait (FoG). We review the evolution of SCS for gait disorders from bench to bedside and discuss potential mechanisms of action, neural substrates, and clinical outcomes.
Collapse
Affiliation(s)
- Erich Talamoni Fonoff
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Andrea C de Lima-Pardini
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Daniel Boari Coelho
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,Biomedical Engineering, Federal University of ABC, Santo André, Brazil
| | - Bernardo Assumpção Monaco
- Department of Neurology, University of São Paulo, São Paulo, Brazil.,Neurosurgery, Association for Assistance of Disabled Children (AACD), São Paulo, Brazil
| | | | | | | | - Clement Hamani
- Division of Neurosurgery, Harquail Centre for Neuromodulation, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|