1
|
Poornima MS, Sindhu G, Billu A, Sruthi CR, Nisha P, Gogoi P, Baishya G, G Raghu K. Pretreatment of hydroethanolic extract of Dillenia indica L. attenuates oleic acid induced NAFLD in HepG2 cells via modulating SIRT-1/p-LKB-1/AMPK, HMGCR & PPAR-α signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115237. [PMID: 35351574 DOI: 10.1016/j.jep.2022.115237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dillenia indica L. is an edible plant from the Dilleniaceae family present in the forest of India and other Asian countries. Different parts of this plant are being used in the traditional system of medicines for various diseases like diabetes, indigestion, asthma, jaundice, and rheumatic pain by various rural communities. This plant is very common among Khamptis traditional healers, the rural community of the Dhemaji district of Assam, ethnic communities of Dibru-Saikhowa Biosphere Reserve of Northeast, India for various medicinal uses. It is observed as a 'vat' suppressant and 'pitta' boosting medicine in Ayurveda. AIM OF THE STUDY The aim of this research was to evaluate the effect of hydroethanolic extract of Dillenia indica leaf (DI-HET) against non-alcoholic fatty liver disease (NAFLD) as it is reported effective against jaundice in traditional medicine. We are also planning to see the various molecular mechanisms responsible for its effect if it is efficacious. STUDY DESIGN/METHOD An in vitro model for NAFLD was employed in this study. For this HepG2 cells were incubated with 100 μM of oleic acid (OA) for 24 h. For evaluation of the effect of DI-HET, the extracts (5 or 10 μg/mL) were pretreated to the OA group. Fenofibrate was the positive control. Various parameters relevant to lipogenesis and β-oxidation of fatty acids like intracellular lipid accumulation, reactive oxygen species (ROS), mitochondrial stress, and key proteins were studied. RESULTS DI-HET significantly reduced the intracellular lipid accumulation in OA treated cells. And also substantially decreased the expression of lipogenic proteins and increased β-oxidation in the OA group. OA induced ROS generation was found to reduce with DI-HET treatment. Western blot analysis showed that the expression of LXR-α, SREBP-1C, SREBP-2, HMGCR, FAS, CD-36, and ACOX-1 were downregulated while that of SIRT-1, p-LKB-, p-AMPK, p-ACC, CPT-1, and PPAR-α upregulated in DI-HET treatment. LCMS/MS analysis showed the presence of polyphenols like naringenin, catechin, epicatechin, shikimic acid, syringic acid, vanillic acid, and kaempferol. CONCLUSION These results suggest that DI-HET is effective against NAFLD by activation of the SIRT-1/p-LKB-1/AMPK signaling pathway via polyphenols present in the extract.
Collapse
Affiliation(s)
- M S Poornima
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - G Sindhu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - Abraham Billu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P Nisha
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pinku Gogoi
- Natural Products Chemistry Group, Chemical Science and Technology Division, CSIR- North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Gakul Baishya
- Natural Products Chemistry Group, Chemical Science and Technology Division, CSIR- North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Afrisham R, Sadegh-Nejadi S, Meshkani R, Emamgholipour S, Paknejad M. Effect of circulating exosomes derived from normal-weight and obese women on gluconeogenesis, glycogenesis, lipogenesis and secretion of FGF21 and fetuin A in HepG2 cells. Diabetol Metab Syndr 2020; 12:32. [PMID: 32322309 PMCID: PMC7161281 DOI: 10.1186/s13098-020-00540-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND It is generally accepted that obesity can lead to metabolic disorders such as NAFLD and insulin resistance. However, the underlying mechanism has been poorly understood. Moreover, there is evidence to support the possible role of exosomes in the metabolic homeostasis regulation. Accordingly, we aimed to determine the effect of plasma circulating exosomes derived from obese and normal-weight women on insulin signaling and the secretion of hepatokines in human liver cells. METHODS Plasma exosomes isolated from four obese (O-Exo) women and four normal-weight (N-Exo) female candidates were characterized for size, zeta potential, and CD63 protein expression and were used for stimulation of HepG2 cells. Then, cell viability, as well as levels of glycogen and triglyceride (TG), were evaluated. Levels of fetuin-A and FGF21 were measured using the ELISA kit. Expression of glucose 6-phosphatase (G6pase) and phosphoenolpyruvate carboxykinase (PEPCK) genes were determined using qRT-PCR. Western blot analysis was carried out to evaluating the phosphorylation of GSK3β. RESULTS The TG levels increased significantly in the cells treated with O-Exo than the control (vehicle) group (P = 0.005) and normal-weight group (P = 0.018). Levels of p-GSK3β and glycogen were significantly reduced by O-Exo in comparison with control (P = 0.002, P = 0.018, respectively). The mRNA expression of G6pase and PEPCK enzymes increased in the cells treated with O-Exo in comparison with the vehicle group (P = 0.017, P = 0.010, respectively). The levels of FGF21 in the supernatant of cells treated with O-Exo and N-Exo were significantly lower than the control group (P = 0.007). CONCLUSION It appears that obesity-related circulating exosomes can impair insulin signaling pathways and associated components, increase intracellular TG content, and decrease FGF21 secretion in the hepatocytes.
Collapse
Affiliation(s)
- Reza Afrisham
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Sadegh-Nejadi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhang H, Wang J, Yang L, Yang W, Luo T, Yuan Y, Gu J, Zou H, Bian J, Liu Z, Liu X. Effect of oleic acid on induction of steatosis and cytotoxicity in BRL 3A cells. J Cell Biochem 2019; 120:19541-19554. [PMID: 31264285 DOI: 10.1002/jcb.29262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Recent studies have shown that monounsaturated oleic acid induces steatosis in cultured hepatocyte steatosis in the form of nonalcoholic fatty liver disease models in vitro. However, the underlying mechanism of steatosis development is not completely understood. Therefore, we investigated the molecular mechanism of steatosis and the role of mitogen-activated protein kinase (MAPK)/toll-like receptor 4-related protein (TLR4) expression in this study. Rat hepatocyte cells were subjected to oleic acid in different concentrations (1.2-2.4 mM) for 24 hours. The cell morphological injury index and the changes in the MAPK/TLR4 signaling pathway-related proteins were evaluated. We found that the microstructure of the cells in the oleic acid treatment group was damaged, and higher phosphorylation levels of the MAPK pathway-related proteins were detected than those in the control group. In addition, the protein expression of TLR4, sterol regulatory element-binding protein-1, and fatty acid synthase were increased in the oleic acid treatment group. Our findings demonstrate that oleic acid causes toxic damage to rat hepatocyte cells, and the MAPK/TLR4 signaling pathway plays a significant role in lipid storage.
Collapse
Affiliation(s)
- Huiyan Zhang
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ling Yang
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Wenling Yang
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Tongwang Luo
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|