1
|
Deng H, Liu J, Xiao Y, Wu JL, Jiao R. Possible Mechanisms of Dark Tea in Cancer Prevention and Management: A Comprehensive Review. Nutrients 2023; 15:3903. [PMID: 37764687 PMCID: PMC10534731 DOI: 10.3390/nu15183903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is one of the most popular drinks in the world. Dark tea is a kind of post-fermented tea with unique sensory characteristics that is produced by the special fermentation of microorganisms. It contains many bioactive substances, such as tea polyphenols, theabrownin, tea polysaccharides, etc., which have been reported to be beneficial to human health. This paper reviewed the latest research on dark tea's potential in preventing and managing cancer, and the mechanisms mainly involved anti-oxidation, anti-inflammation, inhibiting cancer cell proliferation, inducing cancer cell apoptosis, inhibiting tumor metastasis, and regulating intestinal flora. The purpose of this review is to accumulate evidence on the anti-cancer effects of dark tea, the corresponding mechanisms and limitations of dark tea for cancer prevention and management, the future prospects, and demanding questions about dark tea's possible contributions as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Huilin Deng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Jia Liu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, China;
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China;
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| |
Collapse
|
2
|
Gu L, Liu X, Wu S, Chu K, Bao JJ. A cross-sectional study on the tea consumption effects of ankle-brachial index. Vascular 2023; 31:341-349. [PMID: 34957865 DOI: 10.1177/17085381211064745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This thesis aims to explore the relationship between tea consumption and ankle-brachial index (ABI) and further studies the relationship between tea consumption and lower extremity atherosclerosis. METHODS This is a cross-sectional, epidemiological survey of 17,373 subjects selected from the staff of Kailuan Group who had come to Kailuan General Hospital for a health examination from January 2016 to December 2017. Tea consumption was obtained by questionnaires. ABI was measured using an automated analyzer. The other data, such as age, gender, body mass index (BMI), and so on, was collected on the same day of the health examination results. The relationship between tea drinking habits and ABI was studied using logistic regression and multivariate linear regression analysis. RESULTS Among the 17,373 analyzed subjects, the difference in age, gender, BMI, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), uric acid (UA), C-reactive protein (CRP), fasting blood-glucose (Fbg), and ABI was statistically significant in the tea-drinking group and the nontea-drinking group (p < 0.05). Multiple logistic regression models revealed that tea consumption was a positive predictor for ABI (odds ratio (OR) = 0.782, confidence interval (CI), 0.615-0.994) (p < 0.05). Multivariate linear regression analysis of the ABI value showed that frequent tea-drinking has a positive correlation with the ABI value (p < 0.05). CONCLUSIONS The higher tea consumption is significantly associated with higher ABI which means less risk for lower extremity atherosclerosis.
Collapse
Affiliation(s)
- Lishuang Gu
- Department of Ultrasound, Beijing Hospital of Traditional Chinese Medicine, 546663Capital Medical University, Beijing, China
| | - Xuemei Liu
- Department of Ultrasound, Beijing Hospital of Traditional Chinese Medicine, 546663Capital Medical University, Beijing, China
| | - Shouling Wu
- Department of Cardiology, 159361Kailuan General Hospital, Tangshan, China
| | - Kaiyun Chu
- Department of Ultrasound, Beijing Hospital of Traditional Chinese Medicine, 546663Capital Medical University, Beijing, China
| | - Jing-Jing Bao
- Department of Ultrasound, Beijing Hospital of Traditional Chinese Medicine, 546663Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Shen X, Li L, Sun Z, Zang G, Zhang L, Shao C, Wang Z. Gut Microbiota and Atherosclerosis-Focusing on the Plaque Stability. Front Cardiovasc Med 2021; 8:668532. [PMID: 34414217 PMCID: PMC8368126 DOI: 10.3389/fcvm.2021.668532] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of mortality and morbidity in the modern society. The rupture of atherosclerotic plaque can induce thrombus formation, which is the main cause of acute cardiovascular events. Recently, many studies have demonstrated that there are some relationships between microbiota and atherosclerosis. In this review, we will focus on the effect of the microbiota and the microbe-derived metabolites, including trimethylamine-N-oxide (TMAO), short-chain fatty acids (SCFAs), and lipopolysaccharide (LPS), on the stability of atherosclerotic plaque. Finally, we will conclude with some therapies based on the microbiota and its metabolites.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
The Impact of Dietary Supplementation of Whole Foods and Polyphenols on Atherosclerosis. Nutrients 2020; 12:nu12072069. [PMID: 32664664 PMCID: PMC7400924 DOI: 10.3390/nu12072069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to highlight current research on the benefits of supplementation with foods with a diverse polyphenol composition, including fruits, vegetables, nuts, grains, oils, spices, and teas in blunting atherosclerosis. We searched PubMed for publications utilizing whole food or polyphenols prepared from whole foods in Apolipoprotein E (ApoE) or Low-Density Lipoprotein Receptor (LDLR) knockout mice, and identified 73 studies in which plaque was measured. The majority of the studies reported a reduction in plaque. Nine interventions showed no effect, while three using Agaricus blazei mushroom, HYJA-ri-4 rice variety, and safrole-2', 3'-oxide (SFO) increased plaque. The mechanisms by which atherosclerosis was reduced include improved lipid profile, antioxidant status, and cholesterol clearance, and reduced inflammation. Importantly, not all dietary interventions that reduce plaque showed an improvement in lipid profile. Additionally, we found that, out of 73 studies, only 9 used female mice and only 6 compared both sexes. Only one study compared the two models (LDLR vs. ApoE), showing that the treatment worked in one but not the other. Not all supplementations work in both male and female animals, suggesting that increasing the variety of foods with different polyphenol compositions may be more effective in mitigating atherosclerosis.
Collapse
|
5
|
Pang X, Yu W, Cao C, Yuan X, Qiu J, Kong F, Wu J. Comparison of Potent Odorants in Raw and Ripened Pu-Erh Tea Infusions Based on Odor Activity Value Calculation and Multivariate Analysis: Understanding the Role of Pile Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13139-13149. [PMID: 31631665 DOI: 10.1021/acs.jafc.9b05321] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Infusions prepared from raw pu-erh tea (RAPT) and ripened pu-erh tea (RIPT) showed remarkable aroma differences. Predominant odorants in RAPT and RIPT infusions were identified and compared by the combined use of gas chromatography-olfactometry, aroma extract dilution analysis, odor activity values (OAVs), and multivariate analysis. A total of 35 and 19 odorants (OAV > 1) were detected in RIPT and RAPT, respectively. Odorants in RAPT and RIPT are significantly different in both odor properties and aroma compound intensities. Overall, RAPT contained a complex variety of chemical classes with diverse odors and moderate odor intensities, while RIPT is dominated by structurally and organoleptically similar compounds with high potency. Specifically, stale and musty smelling methoxybenzenes contributed the most to RIPT, while floral-, sweet-, and woody-smelling terpene alcohols, terpene ketones, and phenolic compounds were the predominant odorants in RAPT. Orthogonal partial least squares discriminant analysis revealed that linalool, α-ionone, 1,2,4-trimethoxybenzene, 1,2,3-trimethoxy-5-methylbenzene, 1,2,3,4-tetramethoxybenzene, and 1,2,3-trimethoxybenzene underwent remarkable changes during pile fermentation and could be used as potential odor-active markers for RIPT and RAPT discrimination. The comprehensive aroma characterization of pu-erh tea and determination of the effect of pile fermentation on odorant alteration herein will provide guidance for pu-erh tea flavor quality control and evaluation.
Collapse
Affiliation(s)
- Xueli Pang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs , Qingdao 266101 , China
| | - Weisong Yu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs , Qingdao 266101 , China
| | - Changdai Cao
- Shandong Rizhao Tobacco Company Ltd. , Rizhao 276000 , China
| | - Xiaoxiang Yuan
- Yunnan Puer Tea (Group) Co., Ltd. , Pu'er 665100 , China
| | - Jun Qiu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs , Qingdao 266101 , China
| | - Fanyu Kong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs , Qingdao 266101 , China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering , China Agricultural University: National Engineering Research Center for Fruit and Vegetable Processing , Beijing 100083 , China
| |
Collapse
|
6
|
Feng K, Ge Y, Chen Z, Li X, Liu Z, Li X, Li H, Tang T, Yang F, Wang X. Curcumin Inhibits the PERK-eIF2 α-CHOP Pathway through Promoting SIRT1 Expression in Oxidative Stress-induced Rat Chondrocytes and Ameliorates Osteoarthritis Progression in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8574386. [PMID: 31223428 PMCID: PMC6541984 DOI: 10.1155/2019/8574386] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/11/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays a crucial role in the occurrence and development of osteoarthritis (OA) through the activation of endoplasmic reticulum (ER) stress. Curcumin is a polyphenolic compound with significant antioxidant and anti-inflammatory activity among various diseases. To elucidate the role of curcumin in oxidative stress-induced chondrocyte apoptosis, this study investigated the effect of curcumin on ER stress-related apoptosis and its potential mechanism in oxidative stress-induced rat chondrocytes. The results of flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining showed that curcumin can significantly attenuate ER stress-associated apoptosis. Curcumin inhibited the expression of cleaved caspase3, cleaved poly (ADP-ribose) polymerase (PARP), C/EBP homologous protein (CHOP), and glucose-regulated protein78 (GRP78) and upregulated the chondroprotective protein Bcl2 in TBHP-treated chondrocytes. In addition, curcumin promoted the expression of silent information regulator factor 2-related enzyme 1 (SIRT1) and suppressed the expression of activating transcription factor 4 (ATF4), the ratio of p-PERK/PERK, p-eIF2α/eIF2α. Our anterior cruciate ligament transection (ACLT) rat OA model research demonstrated that curcumin (50 mg/kg and 150 mg/kg) ameliorated the degeneration of articular cartilage and inhibited chondrocyte apoptosis in ACLT rats in a dose-dependent manner. By applying immunohistochemical analysis, we found that curcumin enhanced the expression of SIRT1 and inhibited the expression of CHOP and cleaved caspase3 in ACLT rats. Taken together, our present findings firstly indicate that curcumin could inhibit the PERK-eIF2α-CHOP axis of the ER stress response through the activation of SIRT1 in tert-Butyl hydroperoxide- (TBHP-) treated rat chondrocytes and ameliorated osteoarthritis development in vivo.
Collapse
Affiliation(s)
- Kai Feng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuwei Ge
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoxun Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodong Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiqing Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xunlin Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqing Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|