1
|
Niu X, Peng Y, Jiang Z, Huang S, Liu R, Zhu M, Shi L. Gamma-band-based dynamic functional connectivity in pigeon entopallium during sample presentation in a delayed color matching task. Cogn Neurodyn 2024; 18:37-47. [PMID: 38406198 PMCID: PMC10881935 DOI: 10.1007/s11571-022-09916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Birds have developed visual cognitions, especially in discriminating colors due to their four types of cones in the retina. The entopallium of birds is thought to be involved in the processing of color information during visual cognition. However, there is a lack of understanding about how functional connectivity in the entopallium region of birds changes during color cognition, which is related to various input colors. We therefore trained pigeons to perform a delayed color matching task, in which two colors were randomly presented in sample stimuli phrases, and the neural activity at individual recording site and the gamma band functional connectivity among local population in entopallium during sample presentation were analyzed. Both gamma band energy and gamma band functional connectivity presented dynamics as the stimulus was presented and persisted. The response features in the early-stimulus phase were significantly different from those of baseline and the late-stimulus phase. Furthermore, gamma band energy showed significant differences between different colors during the early-stimulus phase, but the global feature of the gamma band functional network did not. Further decoding results showed that decoding accuracy was significantly enhanced by adding functional connectivity features, suggesting the global feature of the gamma band functional network did not directly contain color information, but was related to it. These results provided insight into information processing rules among local neuronal populations in the entopallium of birds during color cognition, which is important for their daily life.
Collapse
Affiliation(s)
- Xiaoke Niu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Yanyan Peng
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Zhenyang Jiang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Shuman Huang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Ruibin Liu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Minjie Zhu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Li Shi
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
- Department of Automation, Tsinghua University, Beijing, 100000 China
| |
Collapse
|
2
|
Liu D, Li S, Ren L, Li X, Wang Z. The superior colliculus/lateral posterior thalamic nuclei in mice rapidly transmit fear visual information through the theta frequency band. Neuroscience 2022; 496:230-240. [PMID: 35724770 DOI: 10.1016/j.neuroscience.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
Animals perceive threat information mainly from vision, and the subcortical visual pathway plays a critical role in the rapid processing of fear visual information. The superior colliculus (SC) and lateral posterior (LP) nuclei of the thalamus are key components of the subcortical visual pathway; however, how animals encode and transmit fear visual information is unclear. To evaluate the response characteristics of neurons in SC and LP thalamic nuclei under fear visual stimuli, extracellular action potentials (spikes) and local field potential signals were recorded under looming and dimming visual stimuli. The results showed that both SC and LP thalamic nuclei were strongly responsive to looming visual stimuli but not sensitive to dimming visual stimuli. Under the looming visual stimulus, the theta (θ) frequency bands of both nuclei showed obvious oscillations, which markedly enhanced the synchronization between neurons. The functional network characteristics also indicated that the network connection density and information transmission efficiency were higher under fear visual stimuli. These findings suggest that both SC and LP thalamic nuclei can effectively identify threatening fear visual information and rapidly transmit it between nuclei through the θ frequency band. This discovery can provide a basis for subsequent coding and decoding studies in the subcortical visual pathways.
Collapse
Affiliation(s)
- Denghui Liu
- School of Electric Engineering, Zhengzhou University, 450001, Zhengzhou, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology
| | - Shouhao Li
- School of Electric Engineering, Zhengzhou University, 450001, Zhengzhou, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology
| | - Liqing Ren
- School of Electric Engineering, Zhengzhou University, 450001, Zhengzhou, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology
| | - Xiaoyuan Li
- School of Electric Engineering, Zhengzhou University, 450001, Zhengzhou, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology.
| | - Zhenlong Wang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology; School of Life Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
3
|
Li M, Fan J, Lin L, Shang Z, Wan H. Elevated Gamma Connectivity in Nidopallium Caudolaterale of Pigeons during Spatial Path Adjustment. Animals (Basel) 2022; 12:1019. [PMID: 35454265 PMCID: PMC9026408 DOI: 10.3390/ani12081019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Previous studies showed that spatial navigation depends on a local network including multiple brain regions with strong interactions. However, it is still not fully understood whether and how the neural patterns in avian nidopallium caudolaterale (NCL), which is suggested to play a key role in navigation as a higher cognitive structure, are modulated by the behaviors during spatial navigation, especially involved path adjustment needs. Hence, we examined neural activity in the NCL of pigeons and explored the local field potentials' (LFPs) spectral and functional connectivity patterns in a goal-directed spatial cognitive task with the detour paradigm. We found the pigeons progressively learned to solve the path adjustment task when the learned path was blocked suddenly. Importantly, the behavioral changes during the adjustment were accompanied by the modifications in neural patterns in the NCL. Specifically, the spectral power in lower bands (1-4 Hz and 5-12 Hz) decreased as the pigeons were tested during the adjustment. Meanwhile, an elevated gamma (31-45 Hz and 55-80 Hz) connectivity in the NCL was also detected. These results and the partial least square discriminant analysis (PLS-DA) modeling analysis provide insights into the neural activities in the avian NCL during the spatial path adjustment, contributing to understanding the potential mechanism of avian spatial encoding. This study suggests the important role of the NCL in spatial learning, especially path adjustment in avian navigation.
Collapse
Affiliation(s)
- Mengmeng Li
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.L.); (J.F.)
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jiantao Fan
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.L.); (J.F.)
| | - Lubo Lin
- School of Intelligent Manufacturing, Huanghuai University, Zhumadian 463000, China;
| | - Zhigang Shang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.L.); (J.F.)
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
| | - Hong Wan
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.L.); (J.F.)
| |
Collapse
|
4
|
Many heads are better than one: A multiscale neural information feature fusion framework for spatial route selections decoding from multichannel neural recordings of pigeons. Brain Res Bull 2022; 184:1-12. [DOI: 10.1016/j.brainresbull.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
|
5
|
Fan J, Li M, Cheng S, Shang Z, Wan H. Spatial learning correlates with decreased hippocampal activity in the goal-directed behavior of pigeons. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:558-561. [PMID: 34891355 DOI: 10.1109/embc46164.2021.9630620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studies have suggested that the hippocampus (Hp) plays an important role in spatial learning and avian Hp is thought to have similar functions with mammals. However, the dynamic neural pattern of hippocampal activity is still unclear in the continuous spatial learning processes of birds. In this study, we recorded the behavioral data and local field potential (LFP) activity from Hp of pigeons performing goal-directed behavior. Then the spectral properties and time-frequency properties of the LFPs are analyzed, comparing with the behavioral changes during spatial learning. The results indicated that the power of the LFP signal in the gamma band shown decreasing trend during spatial learning. Time-frequency analysis results shown that the hippocampal gamma activity was weakened along with the learning process. The results indicate that spatial learning correlated with the decreased gamma activity in Hp and hippocampal neural patterns of pigeons were modulated by goal-directed behavior.
Collapse
|
6
|
Li MM, Fan JT, Cheng SG, Yang LF, Yang L, Wang LF, Shang ZG, Wan H. Enhanced Hippocampus-Nidopallium Caudolaterale Connectivity during Route Formation in Goal-Directed Spatial Learning of Pigeons. Animals (Basel) 2021; 11:ani11072003. [PMID: 34359131 PMCID: PMC8300203 DOI: 10.3390/ani11072003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Goal-directed spatial learning is crucial for the survival of animals, in which the formation of the route from the current location to the goal is one of the central problems. A distributed brain network comprising the hippocampus and prefrontal cortex has been shown to support such capacity, yet it is not fully understood how the most similar brain regions in birds, the hippocampus (Hp) and nidopallium caudolaterale (NCL), cooperate during route formation in goal-directed spatial learning. Hence, we examined neural activity in the Hp-NCL network of pigeons and explored the connectivity dynamics during route formation in a goal-directed spatial task. We found that behavioral changes in spatial learning during route formation are accompanied by modifications in neural patterns in the Hp-NCL network. Specifically, as pigeons learned to solve the task, the spectral power in both regions gradually decreased. Meanwhile, elevated hippocampal theta (5 to 12 Hz) connectivity and depressed connectivity in NCL were also observed. Lastly, the interregional functional connectivity was found to increase with learning, specifically in the theta frequency band during route formation. These results provide insight into the dynamics of the Hp-NCL network during spatial learning, serving to reveal the potential mechanism of avian spatial navigation.
Collapse
Affiliation(s)
- Meng-Meng Li
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Jian-Tao Fan
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Shu-Guan Cheng
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Li-Fang Yang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Long Yang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Liao-Feng Wang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhi-Gang Shang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Z.-G.S.); (H.W.); Tel.: +86-0371-67781417 (Z.-G.S.); +86-0371-67781421 (H.W.)
| | - Hong Wan
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Correspondence: (Z.-G.S.); (H.W.); Tel.: +86-0371-67781417 (Z.-G.S.); +86-0371-67781421 (H.W.)
| |
Collapse
|
7
|
The Role of Hp-NCL Network in Goal-Directed Routing Information Encoding of Bird: A Review. Brain Sci 2020; 10:brainsci10090617. [PMID: 32906650 PMCID: PMC7563516 DOI: 10.3390/brainsci10090617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Goal-directed navigation is a crucial behavior for the survival of animals, especially for the birds having extraordinary spatial navigation ability. In the studies of the neural mechanism of the goal-directed behavior, especially involving the information encoding mechanism of the route, the hippocampus (Hp) and nidopallium caudalle (NCL) of the avian brain are the famous regions that play important roles. Therefore, they have been widely concerned and a series of studies surrounding them have increased our understandings of the navigation mechanism of birds in recent years. In this paper, we focus on the studies of the information encoding mechanism of the route in the avian goal-directed behavior. We first summarize and introduce the related studies on the role of the Hp and NCL for goal-directed behavior comprehensively. Furthermore, we review the related cooperative interaction studies about the Hp-NCL local network and other relevant brain regions supporting the goal-directed routing information encoding. Finally, we summarize the current situation and prospect the existing important questions in this field. We hope this paper can spark fresh thinking for the following research on routing information encoding mechanism of birds.
Collapse
|
8
|
Wang H, Xie K, Xie L, Li X, Li M, Lyu C, Chen H, Chen Y, Liu X, Tsien J, Liu T. Functional Brain Connectivity Revealed by Sparse Coding of Large-Scale Local Field Potential Dynamics. Brain Topogr 2018; 32:255-270. [PMID: 30341589 DOI: 10.1007/s10548-018-0682-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
Abstract
Exploration of brain dynamics patterns has attracted increasing attention due to its fundamental significance in understanding the working mechanism of the brain. However, due to the lack of effective modeling methods, how the simultaneously recorded LFP can inform us about the brain dynamics remains a general challenge. In this paper, we propose a novel sparse coding based method to investigate brain dynamics of freely-behaving mice from the perspective of functional connectivity, using super-long local field potential (LFP) recordings from 13 distinct regions of the mouse brain. Compared with surrogate datasets, six and four reproducible common functional connectivities were discovered to represent the space of brain dynamics in the frequency bands of alpha and theta respectively. Modeled by a finite state machine, temporal transition framework of functional connectivities was inferred for each frequency band, and evident preference was discovered. Our results offer a novel perspective for analyzing neural recording data at such high temporal resolution and recording length, as common functional connectivities and their transition framework discovered in this work reveal the nature of the brain dynamics in freely behaving mice.
Collapse
Affiliation(s)
- Han Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kun Xie
- Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Li Xie
- The State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
| | - Xiang Li
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA, USA
| | - Meng Li
- Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Cheng Lyu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA, USA
| | - Hanbo Chen
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA, USA
| | - Yaowu Chen
- Zhejiang University Embedded System Engineering Research Center, Ministry of Education of China, Hangzhou, China
| | - Xuesong Liu
- Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou, China
| | - Joe Tsien
- Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|